Skip to main content

Advertisement

Log in

Characteristics of cricket (Gryllus bimaculatus) chitosan and chitosan-based nanoparticles

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The field cricket (Gryllus bimaculatus) is commonly consumed as food in different parts of the world. This study was performed to characterize the chitosan extracted from crickets and to assess its potential use to the growing functional market. The degree of deacetylation (DA), Fourier-transform infrared spectra, X-ray diffraction patterns, molecular mass, scanning electron microscopy spectra, and color were measured. Cricket chitosan nanoparticles were prepared, and the optimal conditions were identified. The molecular mass of the cricket chitosan was lower than that of commercial chitosan; however, the DA, FTIR, and XRD spectra were similar. The particle size (208.27 ± 3.47 nm), zeta potential (35.72 ± 1.29 mV), and polydispersity index (PDI: 0.27 ± 0.03) of the cricket chitosan NPs were superior to the commercial. Addition of NaCl reduced the cricket chitosan NPs size up to 15.5%. This finding is a novel trial to prove the availability of the insect chitosan with a low molecular mass as an active carrier source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Fan W, Yan W, Xu Z, Ni H. Formation mechanism of monodisperse, low molecular weight chitosan nanoparticles by ionic gelation technique. Colloids and Surfaces B: Biointerfaces 90: 21–27 (2012)

    Article  CAS  PubMed  Google Scholar 

  2. Rinaudo M. Chitin and chitosan: properties and applications. Progress in polymer science 31: 603–632 (2006)

    Article  CAS  Google Scholar 

  3. Nowak V, Persijn D, Rittenschober D, Charrondiere UR. Review of food composition data for edible insects. Food chemistry 193: 39–46 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Gan Q, Wang T. Chitosan nanoparticle as protein delivery carrier—systematic examination of fabrication conditions for efficient loading and release. Colloids and Surfaces B: Biointerfaces 59: 24–34 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Moreno-Vásquez MJ, Valenzuela-Buitimea EL, Plascencia-Jatomea M, Encinas-Encinas JC, Rodríguez-Félix F, Sánchez-Valdes S, Rosas-Burgos EC, Ocaño-Higuera VM, Graciano-Verdugo AZ. Functionalization of chitosan by a free radical reaction: Characterization, antioxidant and antibacterial potential. Carbohydrate Polymers 155: 117–127 (2017)

    Article  CAS  PubMed  Google Scholar 

  6. Fernández-Pan I, Maté JI, Gardrat C, Coma V. Effect of chitosan molecular weight on the antimicrobial activity and release rate of carvacrol-enriched films. Food Hydrocolloids 51: 60–68 (2015)

    Article  CAS  Google Scholar 

  7. Zou P, Yang X, Wang J, Li Y, Yu H, Zhang Y, Liu G. Advances in characterisation and biological activities of chitosan and chitosan oligosaccharides. Food chemistry 190: 1174–1181 (2016)

    Article  CAS  PubMed  Google Scholar 

  8. Song C, Yu H, Zhang M, Yang Y, Zhang G. Physicochemical properties and antioxidant activity of chitosan from the blowfly Chrysomya megacephala larvae. International journal of biological macromolecules 60: 347–354 (2013)

    Article  CAS  PubMed  Google Scholar 

  9. George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: alginate and chitosan—a review. Journal of controlled release 114: 1–14 (2006)

    Article  CAS  PubMed  Google Scholar 

  10. Kaya M, Baran T, Erdoğan S, Menteş A, Özüsağlam MA, Çakmak YS. Physicochemical comparison of chitin and chitosan obtained from larvae and adult Colorado potato beetle (< i> Leptinotarsa decemlineata</i>). Materials Science and Engineering: C 45: 72–81 (2014)

    Article  CAS  Google Scholar 

  11. Liu S, Sun J, Yu L, Zhang C, Bi J, Zhu F, Qu M, Jiang C, Yang Q. Extraction and characterization of chitin from the beetle Holotrichia parallela motschulsky. Molecules 17: 4604–4611 (2012)

    Article  CAS  PubMed  Google Scholar 

  12. Wu S-J, Pan S-K, Wang H-B, Wu J-H. Preparation of chitooligosaccharides from cicada slough and their antibacterial activity. International journal of biological macromolecules 62: 348–351 (2013)

    Article  CAS  PubMed  Google Scholar 

  13. Pothakamury UR, Barbosa-Cánovas GV. Fundamental aspects of controlled release in foods. Trends in Food Science & Technology 6: 397–406 (1995)

    Article  CAS  Google Scholar 

  14. Nedovic V, Kalusevic A, Manojlovic V, Levic S, Bugarski B. An overview of encapsulation technologies for food applications. Procedia Food Science 1: 1806–1815 (2011)

    Article  CAS  Google Scholar 

  15. Fathi M, Martín Á, McClements DJ. Nanoencapsulation of food ingredients using carbohydrate based delivery systems. Trends in food science & technology 39: 18–39 (2014)

    Article  CAS  Google Scholar 

  16. Shu X, Zhu K. Chitosan/gelatin microspheres prepared by modified emulsification and ionotropic gelation. Journal of microencapsulation 18: 237–245 (2001)

    Article  CAS  PubMed  Google Scholar 

  17. Li J, Chen Y, Yin Y, Yao F, Yao K. Modulation of nano-hydroxyapatite size via formation on chitosan–gelatin network film in situ. Biomaterials 28: 781–790 (2007)

    Article  CAS  PubMed  Google Scholar 

  18. Ai H, Wang F, Yang Q, Zhu F, Lei C. Preparation and biological activities of chitosan from the larvae of housefly, Musca domestica. Carbohydrate polymers 72: 419–423 (2008)

    Article  CAS  Google Scholar 

  19. Sabnis S, Block LH. Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan. Polymer Bulletin 39: 67–71 (1997)

    Article  CAS  Google Scholar 

  20. Wu Y, Yang W, Wang C, Hu J, Fu S. Chitosan nanoparticles as a novel delivery system for ammonium glycyrrhizinate. International journal of pharmaceutics 295: 235–245 (2005)

    Article  CAS  PubMed  Google Scholar 

  21. Kim D-Y, Shin W-S. Functional improvements in bovine serum albumin–fucoidan conjugate through the Maillard reaction. Food chemistry 190: 974–981 (2016)

    Article  CAS  PubMed  Google Scholar 

  22. Kim D-Y, Shin W-S. Unique characteristics of self-assembly of bovine serum albumin and fucoidan, an anionic sulfated polysaccharide, under various aqueous environments. Food Hydrocolloids 44: 471–477 (2015)

    Article  CAS  Google Scholar 

  23. Kaya M, Baran T. Description of a new surface morphology for chitin extracted from wings of cockroach (Periplaneta americana). International journal of biological macromolecules 75: 7–12 (2015)

    Article  CAS  PubMed  Google Scholar 

  24. Sajomsang W, Gonil P. Preparation and characterization of α-chitin from cicada sloughs. Materials Science and Engineering: C 30: 357–363 (2010)

    Article  CAS  Google Scholar 

  25. Zhang M, Haga A, Sekiguchi H, Hirano S. Structure of insect chitin isolated from beetle larva cuticle and silkworm (Bombyx mori) pupa exuvia. International Journal of Biological Macromolecules 27: 99–105 (2000)

    Article  CAS  PubMed  Google Scholar 

  26. Kaya M, Erdogan S, Mol A, Baran T. Comparison of chitin structures isolated from seven Orthoptera species. International journal of biological macromolecules 72: 797–805 (2015)

    Article  CAS  PubMed  Google Scholar 

  27. Tolaimate A, Desbrieres J, Rhazi M, Alagui A. Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties. Polymer 44: 7939–7952 (2003)

    Article  CAS  Google Scholar 

  28. Chatterjee S, Adhya M, Guha A, Chatterjee B. Chitosan from Mucor rouxii: production and physico-chemical characterization. Process Biochemistry 40: 395–400 (2005)

    Article  CAS  Google Scholar 

  29. Mohammed MH, Williams PA, Tverezovskaya O. Extraction of chitin from prawn shells and conversion to low molecular mass chitosan. Food Hydrocolloids 31: 166–171 (2013)

    Article  CAS  Google Scholar 

  30. Kucukgulmez A, Celik M, Yanar Y, Sen D, Polat H, Kadak AE. Physicochemical characterization of chitosan extracted from Metapenaeus stebbingi shells. Food Chemistry 126: 1144–1148 (2011)

    Article  CAS  Google Scholar 

  31. Abdou ES, Nagy KS, Elsabee MZ. Extraction and characterization of chitin and chitosan from local sources. Bioresource Technology 99: 1359–1367 (2008)

    Article  CAS  PubMed  Google Scholar 

  32. Sagheer FAA, Al-Sughayer MA, Muslim S, Elsabee MZ. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydrate Polymers 77: 410–419 (2009)

    Article  CAS  Google Scholar 

  33. Zhang S, Liu Ja, Chen Y, Xiong S, Wang G, Chen J, Yang G. A novel strategy for MALDI-TOF MS analysis of small molecules. Journal of the American Society for Mass Spectrometry 21: 154–160 (2010)

    Article  CAS  PubMed  Google Scholar 

  34. Benediktsdóttir BE, Sørensen KK, Thygesen MB, Jensen KJ, Gudjónsson T, Baldursson Ó, Másson M. Regioselective fluorescent labeling of N, N, N-trimethyl chitosan via oxime formation. Carbohydrate polymers 90: 1273–1280 (2012)

    Article  CAS  PubMed  Google Scholar 

  35. Lei F, Wang X, Liang C, Yuan F, Gao Y. Preparation and functional evaluation of chitosan‐EGCG conjugates. Journal of Applied Polymer Science 131 (2014)

  36. Prasertsung I, Damrongsakkul S, Terashima C, Saito N, Takai O. Preparation of low molecular weight chitosan using solution plasma system. Carbohydrate Polymers 87: 2745–2749 (2012)

    Article  CAS  Google Scholar 

  37. Seo S, King J, Prinyawiwatkul W. Simultaneous depolymerization and decolorization of chitosan by ozone treatment. Journal of food science 72: C522-C526 (2007)

    Article  CAS  PubMed  Google Scholar 

  38. Yen M-T, Yang J-H, Mau J-L. Physicochemical characterization of chitin and chitosan from crab shells. Carbohydrate Polymers 75: 15–21 (2009)

    Article  CAS  Google Scholar 

  39. Antoniou J, Liu F, Majeed H, Qi J, Yokoyama W, Zhong F. Physicochemical and morphological properties of size-controlled chitosan–tripolyphosphate nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects 465: 137–146 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A09061228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weon-Sun Shin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chae, KS., Shin, CS. & Shin, WS. Characteristics of cricket (Gryllus bimaculatus) chitosan and chitosan-based nanoparticles. Food Sci Biotechnol 27, 631–639 (2018). https://doi.org/10.1007/s10068-018-0314-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-018-0314-4

Keywords