Skip to main content

The anti-photoaging and moisturizing effects of Bouea macrophylla extract in UVB-irradiated hairless mice

Abstract

Ultraviolet (UV) light, a main cause of photoaging, leads to collapse of skin structure, resulting in wrinkle formation and dehydration. The present study assessed the anti-photoaging and moisturizing effects of Bouea macrophylla extract (BRE). UVB-irradiated hairless mice were orally administered with BME (300 mg/kg/day) for 8 weeks. BME ameliorated wrinkle formation, skin thickening, and inelasticity. BME upregulated COL1A1, COL3A1, COL4A1, and COL7A1 mRNA levels through activation of the transforming growth factor-β (TGF-β)/Smad pathway, thereby recovering the content of collagen reduced by UVB. Further, BME suppressed UVB-induced matrix metalloproteinase (MMP)-3 and MMP-13 expression and inhibited MMP-2 and MMP-9 activity by mediating the mitogen-activated protein kinases (MAPKs)/activator protein-1 (AP-1). BME improved moisture content by stimulating the expression of cornified envelope proteins and filaggrin-processing enzymes. Overall, the results show that BME prevents photoaging and promotes moisturization in UVB-irradiated hairless mice, suggesting its potential as a nutraceutical candidate for anti-photoaging and moisturizing effects.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. El-Domyati M, Attia S, Saleh F, Brown D, Birk DE, Gasparro F, Ahmad H, Uitto J. Intrinsic aging vs. photoaging: a comparative histopathological, immunohistochemical, and ultrastructural study of skin. Experi. Dermatol. 11: 398–405 (2002).

  2. Kuhn A, Zahn S, Patsinakidis N, Landmann A, Graef M, Sauerland C, Surber C, Wenzel J. Resistance to water and abrasion of a broad-spectrum sunscreen: a prospective, open-label study. Experi. Dermatol. 25: 151–152 (2016).

    Article  Google Scholar 

  3. Bickers DR, Athar M. Oxidative stress in the pathogenesis of skin disease. J. Investig. Dermatol. 126: 2565–2575 (2006).

    CAS  Article  Google Scholar 

  4. Passeron T, Ortonne J. Skin ageing and its prevention. Press. Medica. 32: 1474–1482 (2003).

    Google Scholar 

  5. Heng MC. Signaling pathways targeted by curcumin in acute and chronic injury: burns and photo-damaged skin. Int. J. Dermatol. 52: 531–543 (2013).

    CAS  Article  Google Scholar 

  6. Lu J, Guo JH, Tu XL, Zhang C, Zhao M, Zhang QW, Gao FH. Tiron inhibits UVB-Induced AP-1 binding sites transcriptional activation on MMP-1 and MMP-3 promoters by MAPK signaling pathway in human dermal fibroblasts. PloS ONE 11: e0159998 (2016).

    Article  Google Scholar 

  7. Watson RE, Gibbs NK, Griffiths CE, Sherratt MJ. Damage to skin extracellular matrix induced by UV exposure. Antioxid. Redox. Signal. 21: 1063–1077 (2014).

    CAS  Article  Google Scholar 

  8. Chen B, Li R, Yan N, Chen G, Qian W, Jiang HL, Ji C, Bi ZG. Astragaloside IV controls collagen reduction in photoaging skin by improving transforming growth factor-β/Smad signaling suppression and inhibiting matrix metalloproteinase-1. Mol. Med. Rep. 11: 3344–3348 (2015).

    CAS  Article  Google Scholar 

  9. Quan T, He T, Kang S, Voorhees JJ, Fisher GJ. Solar ultraviolet irradiation reduces collagen in photoaged human skin by blocking transforming growth factor-β type II receptor/Smad signaling. Am. J. Pathol. 165: 741–751 (2004).

    CAS  Article  Google Scholar 

  10. Gilmore TD. Introduction to NF-κB: players, pathways, perspectives. Oncogene 25: 6680–6684 (2006).

    CAS  Article  Google Scholar 

  11. Perkins ND. Integrating cell-signalling pathways with NF-κB and IKK function. Nat. Rev. Mol. Cell Biol. 8: 49–62 (2007).

    CAS  Article  Google Scholar 

  12. Carmeliet P, Jain RK. Molecular mechanisms and clinical applications of angiogenesis. Nature 473: 298–307 (2011).

    CAS  Article  Google Scholar 

  13. Oh Y, Lim H-W, Kim K, Lim C-J. Ginsenoside Re improves skin barrier function in HaCaT keratinocytes under normal growth conditions. Biosci. Biotehcnol. Biochem 80: 2165–2167 (2016).

    CAS  Article  Google Scholar 

  14. Rinnerthaler M, Duschl J, Steinbacher P, Salzmann M, Bischof J, Schuller M, Wimmer H, Peer T, Bauer JW, Richter K. Age-related changes in the composition of the cornified envelope in human skin. Experi. Dermatol. 22: 329–335 (2013).

    CAS  Article  Google Scholar 

  15. Rajan NS, Bhat R. Antioxidant compounds and antioxidant activities in unripe and ripe kundang fruits (Bouea macrophylla Griffith). Fruits 71: 41–47 (2016).

    Article  Google Scholar 

  16. Heck DE, Vetrano AM, Mariano TM, Laskin JD. UVB light stimulates production of reactive oxygen species unexpected role for catalase. J. Biol. Chem. 278: 22432–22436 (2003).

    CAS  Article  Google Scholar 

  17. Park JE, Pyun HB, Woo SW, Jeong JH, Hwang JK. The protective effect of Kaempferia parviflora extract on UVB-induced skin photoaging in hairless mice. Photodermatol. Photoimmunol Photomed. 30: 237–245 (2014).

    Article  Google Scholar 

  18. Anggakusuma, Yanti, Hwang JK. Effects of macelignan isolated from Myristica fragrans Houtt. on UVB-induced matrix metalloproteinase-9 and cyclooxygenase-2 in HaCaT cells. J. Dermatol. Sci. 57: 114–122 (2010).

    CAS  Article  Google Scholar 

  19. Draelos ZD. The latest cosmeceutical approaches for anti-aging. J. Cosmet. Dermatol. 6: 2–6 (2007).

    Article  Google Scholar 

  20. Kim YJ, Kim HN, Shin MS, Choi BT. Thread embedding acupuncture inhibits ultraviolet B irradiation-induced skin photoaging in hairless mice. Evid. Based Complement. Alternat. Med. 2015 (2015).

  21. Shirakata Y. Regulation of epidermal keratinocytes by growth factors. J. Dermatol. Sci. 59: 73–80 (2010).

    CAS  Article  Google Scholar 

  22. Kim HK. Garlic supplementation ameliorates UV-induced photoaging in hairless mice by regulating antioxidative activity and MMPs expression. Molecules 21: 70 (2016).

    Article  Google Scholar 

  23. Zhan JYX, Wang XF, Liu YH, Zhang ZB, Wang L, Chen JN, Huang S, Zeng HF, Lai XP. Andrographolide sodium bisulfate prevents UV-induced skin photoaging through inhibiting oxidative stress and inflammation. Mediators Inflamm. 2016: 1–12 (2016).

    Article  Google Scholar 

  24. Pillai S, Oresajo C, Hayward J. Ultraviolet radiation and skin aging: roles of reactive oxygen species, inflammation and protease activation, and strategies for prevention of inflammation-induced matrix degradation—a review. Int. J. Cosmet. Sci. 27: 17–34 (2005).

    CAS  Article  Google Scholar 

  25. Tanaka YT, Tanaka K, Kojima H, Hamada T, Masutani T, Tsuboi M, Akao Y. Cynaropicrin from Cynara scolymus L. suppresses photoaging of skin by inhibiting the transcription activity of nuclear factor-kappa B. Bioorg. Med. Chem. Lett. 23: 518–523 (2013).

    CAS  Article  Google Scholar 

  26. Amano S, Ogura Y, Akutsu N, Matsunaga Y, Kadoya K, Adachi E, Nishiyama T. Protective effect of matrix metalloproteinase inhibitors against epidermal basement membrane damage: skin equivalents partially mimic photoageing process. Br. J. Dermatol. 153: 37–46 (2005).

    CAS  Article  Google Scholar 

  27. Chen T, Hou H, Lu J, Zhang K, Li B. Protective effect of gelatin and gelatin hydrolysate from salmon skin on UV irradiation-induced photoaging of mice skin. J. Ocean U. China 15: 1–8 (2016).

    Article  Google Scholar 

  28. Nagase H, Visse R, Murphy G. Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc. Res. 69: 562–573 (2006).

    CAS  Article  Google Scholar 

  29. Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat. Rev. Mol. Cell Biol. 8: 221–233 (2007).

    CAS  Article  Google Scholar 

  30. Pittayapruek P, Meephansan J, Prapapan O, Komine M, Ohtsuki M. Role of matrix metalloproteinases in photoaging and photocarcinogenesis. Int. J. Mol. Sci. 17: 868 (2016).

    Article  Google Scholar 

  31. Kim MS, Oh GH, Kim MJ, Hwang JK. Fucosterol inhibits matrix metalloproteinase expression and promotes type-1 procollagen production in UVB-induced HaCaT cells. Photochem. Photobiol. 89: 911–918 (2013).

    CAS  Article  Google Scholar 

  32. Candi E, Schmidt R, Melino G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6: 328–340 (2005).

    CAS  Article  Google Scholar 

  33. Yamane M, Sugimura K, Kawasaki H, Tatsukawa H, Hitomi K. Analysis on transglutaminase 1 and its substrates using specific substrate peptide in cultured keratinocytes. Biochem. Biophys. Res. Commun. 478: 343–348 (2016).

    CAS  Article  Google Scholar 

  34. Kim H, Lim YJ, Park JH, Cho Y. Dietary silk protein, sericin, improves epidermal hydration with increased levels of filaggrins and free amino acids in NC/Nga mice. Br. J. Nutr. 108: 1726–1735 (2012).

    CAS  Article  Google Scholar 

  35. Lai CH, Chang SC, Chen YJ, Wang YJ, Lai YJ, Chang HD, Berens EB, Johnson MD, Wang JK, Lin CY. Matriptase and prostasin are expressed in human skin in an inverse trend over the course of differentiation and are targeted to different regions of the plasma membrane. Biol. Open 5: 1380–1387 (2016).

    Article  Google Scholar 

  36. Descargues P, Sil AK, Sano Y, Korchynskyi O, Han G, Owens P, Wang XJ, Karin M. IKKα is a critical coregulator of a Smad4-independent TGFβ-Smad2/3 signaling pathway that controls keratinocyte differentiation. Proc. Natl. Acad. Sci. 105: 2487–2492 (2008).

    CAS  Article  Google Scholar 

  37. Wu N, Sulpice E, Obeid P, Benzina S, Kermarrec F, Combe S, Gidrol X. The miR-17 family links p63 protein to MAPK signaling to promote the onset of human keratinocyte differentiation. PloS ONE, 7: e45761 (2012).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Kwan Hwang.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cheong, Y., Kim, C., Kim, MB. et al. The anti-photoaging and moisturizing effects of Bouea macrophylla extract in UVB-irradiated hairless mice. Food Sci Biotechnol 27, 147–157 (2018). https://doi.org/10.1007/s10068-017-0276-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0276-y

Keywords

  • Bouea macrophylla
  • Matrix metalloproteinase
  • Collagen
  • Anti-photoaging
  • Moisturizing effect