Food Science and Biotechnology

, Volume 27, Issue 2, pp 591–598 | Cite as

Separation and identification of bromelain-generated antibacterial peptides from Actinopyga lecanora

Article
  • 28 Downloads

Abstract

Actinopyga lecanora, as a rich protein source was hydrolysed to generate antibacterial bioactive peptides using different proteolytic enzymes. Bromelain hydrolysate, after 1 h hydrolysis, exhibited the highestantibacterial activities against Pseudomonas aeruginosa, Pseudomonas sp., Escherichia coli and Staphylococcus aureus. Two dimensional fractionation strategies, using a semi-preparative RP-HPLC and an isoelectric-focusing electrophoresis, were applied for peptide profiling. Furthermore, UPLC-QTOF-MS was used for peptides identification; 12 peptide sequences were successfully identified. The antibacterial activity of purified peptides from A. lecanora on P. aeruginosa, Pseudomonas sp., E. coli and S. aureus was investigated. These identified peptides exhibited growth inhibition against P. aeruginosa, Pseudomonas sp., E. coli and S. aureus with values ranging from 18.80 to 75.30%. These results revealed that the A. lecanora would be used as an economical protein source for the production of high value antibacterial bioactive peptides.

Keywords

Actinopyga lecanora Bioactive peptides Antibacterial activity Hydrolysate Proteolytic enzyme 

Notes

Acknowledgments

This work was funded by the Malaysia Ministry of Science, Technology and Innovation (MOSTI) under Project No. 10-05ABI-FB 037.

References

  1. 1.
    Sarmadi B, Ismail A, & Hamid, M. Antioxidant and angiotensin converting enzyme (ACE) inhibitory activities of cocoa (Theobroma cacao L.) autolysates. Food Res. Int. 44: 290–296(2011).CrossRefGoogle Scholar
  2. 2.
    Kim S.-K, & Wijesekara, I. Development and biological activities of marine-derived bioactive peptides: A review. J Funct. Foods. 2: 1–9(2010).CrossRefGoogle Scholar
  3. 3.
    Hancock R. E. W, & Sahl, H.-G. Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol. 24: 1551–1557(2006).Google Scholar
  4. 4.
    Gallo R. L, Murakami M, Ohtake, T, & Zaiou M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy. Clin. Immunol. 110: 823–831(2002).CrossRefGoogle Scholar
  5. 5.
    Zhang Y.-x., Zou, A.-h., Manchu, R.-g., Zhou, Y.-c., & Wang, S.-f. Purification and antimicrobial activity of antimicrobial protein from Brown-spotted Grouper, Epinephelus fario. Zool Res. 6627–632(2008).Google Scholar
  6. 6.
    Shahidi F, & Zhong Y. Bioactive peptides. J. AOAC. Int. 91: 914–931 (2008).Google Scholar
  7. 7.
    Ghanbari R, Ebrahimpour A, Abdul-Hamid A, Ismail A, & Saari N. Actinopyga lecanora hydrolysates as natural antibacterial agents. Int J. Mol. Sci. 13: 16796–16811(2012).Google Scholar
  8. 8.
    Church F C, Swaisgood H E, Porter D H, & Catignani G L. Spectrophotometric assay using o-Phthaldialdehyde for determination of proteolysis in milk and isolated milk proteins. J Dairy. Sci. 66: 1219–1227(1983).CrossRefGoogle Scholar
  9. 9.
    Liu Z, Dong S, Xu J, Zeng M, Song H, & Zhao Y. Production of cysteine-rich antimicrobial peptide by digestion of oyster (Crassostrea gigas) with alcalase and bromelin. Food Control. 19: 231–235(2008).CrossRefGoogle Scholar
  10. 10.
    Tang W, Zhang H, Wang L, & Qian H. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. Eur Food. Res. Technol. 1–10(2013).Google Scholar
  11. 11.
    Nokihara K, Yamamoto R, Hazama M, Wakizawa O, & Nakamura S. Design and applications of a novel simultaneous multiple solid-phase peptide synthesizer, In R. Epton (Ed.) (pp. 445–448). Andover, UK: Intercept Limited(1992).Google Scholar
  12. 12.
    Nakajima Y, Ishibashi J, Yukuhiro F, Asaoka A, Taylor D, & Yamakawa, M. Antibacterial activity and mechanism of action of tick defensin against Gram-positive bacteria. Biochimicaet Biophysica Acta.1624: 125–130(2003).Google Scholar
  13. 13.
    Osman A, Goda H, Abdol-Hamid M, Badra S, & Otte, J. Antibacterial peptide generated by alkalase hydrolysis of goat whey. LWT- Food sci. technol. 65: 480–486 (2016).CrossRefGoogle Scholar
  14. 14.
    Lam H.-T, Josserand J, Lion N, & Girault H H. Modeling the isoelectric focusing of peptides in an OFFGEL multicompartment cell. J. Proteome Res. 6: 1666–1676 (2007).Google Scholar
  15. 15.
    Hancock, R. E. W. Cationic peptides: effectors in innate immunity and novel antimicrobials. Lancet Infect. Dis. 1: 156–164(2001).CrossRefGoogle Scholar
  16. 16.
    Dathe M, Nikolenko H, Meyer J, Beyermann M, & Bienert M. Optimization of the antimicrobial activity of magainin peptides by modification of charge. FEBS Letters. 501: 146–150(2001).CrossRefGoogle Scholar
  17. 17.
    Sila A, Nedjar-Arroume N, Hedhili K, Chataigne G, Balti R, Nasri M, Dhulster P, & Bougatef A, Antibacterial peptides from barbel muscle protein hydrolysates: Activity against some pathogenic bacteria. LWT Food. Sci. Technol. 55: 183–188(2014).CrossRefGoogle Scholar
  18. 18.
    Jang A, Jo C, Kang K.-S, & Lee M. Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food. Chem. 107: 327–336(2008).CrossRefGoogle Scholar
  19. 19.
    Fjell C. D, Hiss J, AHancock, R. E. W, & Schneider G. Designing antimicrobial peptides: form follows function. Nat. Rev. Drug. Discov.11:3751(2012).Google Scholar
  20. 20.
    Brogden K. A. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria? Nat. Rev. Microbi. 3: 238–250(2005).CrossRefGoogle Scholar
  21. 21.
    Hali, N.R.A, Yusof H. M, & Sarbon N.M. Functional and bioactive properties of fish protein hydrolysates and peptides: A comprehensive review. Trends Food. Sci. Technol. (2016).Google Scholar
  22. 22.
    Hwang C-F, Chen Y-A, Luo C, & Chiang W-D. Antioxidant and antibacterial activities of peptide fractions from flaxseed protein hydrolysed by protease from Bacillus altitudinis HK02. Int Food. Sci. Technol. 51: 681–869 (2016).CrossRefGoogle Scholar
  23. 23.
    Conlon J. M, Al-Ghaferi N, Abraham B, & Leprince J. r. m. Strategies for transformation of naturally-occurring amphibian antimicrobial peptides into therapeutically valuable anti-infective agents. Methods. 42: 349–357(2007).CrossRefGoogle Scholar
  24. 24.
    Aissaoui N, Chobert J-M, Haertlé T, Marzouki M-N, & Abidi F. Purification and biochemical characterization of a neutral serine protease from trichoderma harzianum. use in antibacterial peptide production from a fish by-product hydrolysate. Appl. Biochem. Biotechnol. 182: 831–845(2017).CrossRefGoogle Scholar
  25. 25.
    Dennison S. R, Wallace J, Harris F, & Phoenix D. A. Amphiphilic α-Helical antimicrobial peptides and their structure/function relationships. Protein. Pept. Lett. 12: 31–39 (2005).CrossRefGoogle Scholar
  26. 26.
    Park C. B, Yi K.-S, MatsuzakiK, Kim M. S, & Kim S. C. Structure-activity analysis of buforin II, a histone H2A-derived antimicrobial peptide: the proline hinge is responsible for the cell-penetrating ability of buforin II. Proc. Natl. Acad. Sci. 97: 8245–8250 (2000).CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media B.V., part of Springer Nature 2017

Authors and Affiliations

  1. 1.Acurate Food LabratoryTajzieh Kimia Novin AzmaTehranIran
  2. 2.Faculty of Food Science and TechnologyUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations