Skip to main content

Advertisement

Log in

Identification and characterization of lactic acid bacteria isolated from traditional cone yoghurt

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Cone yoghurt is a yoghurt variety produced by adding only pine cones to milk without culture in a limited area of Turkey. The present study was conducted to identify and characterize lactic flora in traditional cone yoghurt. Morphological, cultural, physiological, biochemical, and genotypic characteristics were employed to identify lactic acid bacteria isolates from cones and cone yoghurts. Streptococcus salivarius subsp. thermophilus (S. thermophilus) and Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus) were obtained from both cones and yoghurts. Among the isolates, L. plantarum was frequently isolated except for these two bacteria (S. thermophilus and L. bulgaricus). The results indicate that the cone yoghurt has a mixed microflora contrary to the yoghurt produced by the addition of a starter culture and S. thermophilus, and L. bulgaricus in cone yoghurt originates from the pine cones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Yilmaz R, Temiz A. S. thermophilus ve L. bulgaricus’ un klasik ve molekuler yontemler kullanilarak tanımlanmasi ve karakterizasyonu. Orlab On-Line Mikrobiyoloji Dergisi. 1: 19–42 (2003)

  2. Rasic J, Kurmann JA. Microflora of yoghurt. Vol.1, pp 20-55. In Yoghurt: Scientic Grounds, Technology, Manufacture and Preparations. Technical Dairy Publishing House, Copenhagen, Denmark (1978)

  3. Vos P, Garrity G, Jones D, Krieg NR, Ludwig W, Rainey FA, Scheifer KH, Whitman, WB. Bergey’s Manual of Systematic Bacteriology. 2nd ed. Springer-Verlag, New York, USA. pp. 464-722 (2009)

    Google Scholar 

  4. Faber EJ, Kamerling JP, Vliegenthart JFG. Structure of the extracellular polysaccharide produced by L. bulgaricus 291. Carbohydr. Res. 331: 183–194 (2001)

    Article  CAS  Google Scholar 

  5. Faber EJ, van den Haak MJ, Kamerling JP, Vliegenthart JFG. Structure of the exopolysaccharide produced by S. thermophilus S3. Carbohydr. Res. 331: 173–182 (2001)

    Article  CAS  Google Scholar 

  6. Milci S, Yaygin H. Laktik asit bakterileri tarafından uretilen ekzopolisakkaritler ve sut urunlerindeki fonksiyonlari. Gida. 30: 123–129 (2005)

    Google Scholar 

  7. Ma CJ, Wu ZJ, Chen ZJ, Du ZP, Sun KJ, Ma AM. Differentiation of S. thermophilus strains in commercial Direct Vat Set yoghurt starter. Food Sci. Biotechnol. 24: 987–991 (2013)

    Article  Google Scholar 

  8. Michaylova M, Minkova S, Kimura K, Sasaki T, Isawa K. Isolation and characterization of L. bulgaricus and S. thermophilus from plants in Bulgaria. FEMS Microbiol. Lett. 269: 160–169 (2007)

    Article  CAS  Google Scholar 

  9. Tavsanli H, Elal Mus T, Cetinkaya F, Cibik R. Geleneksel tekniklerle uretilen yogurtlardan ve dogadaki bitkisel orneklerden izole edilen yogurt bakterilerinin bakteriyolitik aktiviteleri. Gida ve Yem Bilimi-Teknolojisi Dergisi. 16: 1–7 (2016)

    Google Scholar 

  10. Collado MC, Herna´ndez M. Identification and differentiation of Lactobacillus, Streptococcus and Bifidobacterium species in fermented milk products with bifidobacteria. Microbiol. Res. 162: 86–92 (2007)

    Article  CAS  Google Scholar 

  11. Lick S, Drescher K, Heller KJ. Survival of L. bulgaricus and S. thermophilus in the terminal ileum of fistulated gottingen minipigs. Appl. Environ. Microbiol. 67: 4137–4143 (2001)

    Article  CAS  Google Scholar 

  12. Drancourt M, Bollet C, Carlioz A, Martelin R, Gayral JP, Raoult D. 16S ribosomal DNA sequence analysis of a large collection of environmental and clinical unidentifiable bacterial isolates. J. Clin. Microbiol. 38: 3623–3630 (2000)

    CAS  Google Scholar 

  13. Mackay IM. Real-time PCR in the microbiology laboratory. Clin. Microbiol. Infect. 10: 190–212 (2004)

    Article  CAS  Google Scholar 

  14. Furet JP, Quenee P, Tailliez P. Molecular quantification of lactic acid bacteria in fermented milk products using real-time quantitative PCR. Int. J. Food Microbiol. 97: 197–207 (2004)

    Article  CAS  Google Scholar 

  15. Dong Y, Cui S, Li F, Yu H. Identification of Lactobacillus and S. thermophilus by PCR amplification and sequence analysis of 16S rRNA. Wei Sheng Yan Jiu. 39: 454–458 (2010)

    CAS  Google Scholar 

  16. Janda JM, Abbott SL. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 2761–2764 (2007)

    Article  CAS  Google Scholar 

  17. Aslim B, Beyatli Y, Soran H, Mercan N, Durlu Ozkaya F, Yuksekdag ZN, Ediz N. Bazi laktik asit bakterilerinin ekzopolisakkarit uretimlerinin belirlenmesi. TUBITAK-TBAG 2090 (101 T 129), Ankara (2005)

  18. Erkus O. Isolation, phenotypic and genotypic characterization of yoghurt starter bacteria. MS Thesis, Graduate School of Engineering and Sciences of Izmir, Izmir, Turkey (2007)

  19. Aslim B, Beyatli Y. Koy ve kasaba yogurtlarindan izole edilen Lactobacillus bulgaricus suslarinin metabolik ve antimikrobiyal aktiviteleri üzerine bir arastirma. Gida. 22: 441–447 (1997)

    Google Scholar 

  20. Giraffa G, Carminati D, Neviani E. Enterococci isolated from dairy products: a review of risks and potential technological use. J. Food Prot. 60: 732–738 (1997).

    Article  Google Scholar 

  21. Birollo GA, Reinheimer JA, Vinderola CG. Enterococci vs non-lactic acid microflora as hygiene indicators for sweetened yoghurt. Food Microbiol. 18: 597–604 (2001)

    Article  CAS  Google Scholar 

  22. Elmali M, Yaman H. Microbiological quality of yogurt consumed in Kars. J. Fac. Vet. Med. Istanbul Univ. 31: 19–24 (2005)

    Google Scholar 

  23. Smetanková J, Hladíková Z, Valach F, Zimanová M, Kohajdová Z, Greif G, Greifová M. Influence of aerobic and anaerobic conditions on the growth and metabolism of selected strains of Lactobacillus plantarum. Acta Chim. Slov. 5: 204–210 (2012)

    Google Scholar 

  24. Melgar-Lalanne G, Rivera-Espinoza Y, Hernández-Sánchez H. Lactobacillus plantarum: An overview with emphasis in biochemical and healthy properties. pp. 1-31. In: Lactobacillus: Classification, Uses and Health Implications. Pérez Campos A., Mena AL (eds). Nova Publishing, New York, USA (2012)

  25. Cebeci A, Gurakan C. Properties of potential probiotic Lactobacillus plantarum strains. Food Microbiol. 20: 511–518 (2003)

    Article  Google Scholar 

  26. Ko JS, Yang HR, Chang JY, Seo JK. Lactobacillus plantarum inhibits epithelial dysfunction and interleukin-8 secretion induced by tumor necrosis factor-α. World J. Gastroenterol. 13: 1962–1965 (2007)

    Article  CAS  Google Scholar 

  27. Caggianiello G, Kleerebezem M, Spano G. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 100: 3877–3886 (2016)

    Article  CAS  Google Scholar 

  28. Sunanliganon C, Thong-Ngam D, Tumwasorn S, Klaikeaw N. Lactobacillus plantarum B7 inhibits Helicobacter pylori growth and attenuates gastric inflammation. World J. Gastroenterol. 18: 2472–2480 (2012)

    Article  Google Scholar 

  29. Duboc P, Mollet B. Applications of exopolysaccharides in dairy industry. Int. Dairy J. 11: 759–768 (2001)

    Article  CAS  Google Scholar 

  30. Leisner JJ, Laursen BG, Prevost H, Drider D, Dalgaard P. Carnobacterium: positive and negative efects in the environment and in foods. FEMS Microbiol. Rev. 31: 592–613 (2007)

    Article  CAS  Google Scholar 

  31. Afzal MI, Ariceaga CCG, Lhomme E, Ali NK, Payot S, Burgain J, Gaiani C, Borges F, Revol-Junelles AM, Delaunay S, Cailliez-Grimal C. Characterization of Carnobacterium maltaromaticum LMA 28 for its positive technological role in soft cheese making. Food Microbiol. 36: 223–230 (2013)

    Article  CAS  Google Scholar 

  32. Cailliez-Grimal C, Edima HC, Revol-Junelles AM, Millière JB. Carnobacterium maltaromaticum: the only Carnobacterium species in French ripened soft cheeses as revealed by polymerase chain reaction detection. J. Dairy Sci. 90: 1133–1138 (2007)

    Article  CAS  Google Scholar 

  33. Afzal MI, Jacquet T, Delaunay S, Borges F, Millière JB, Revol-Junelles AM, Cailliez-Grimal C. Carnobacterium maltaromaticum: Identification, isolation tools, ecology and technological aspects in dairy products. Food Microbiol. 27: 573–579 (2010)

    Article  Google Scholar 

  34. Smittle RB. Microbial safety of mayonnaise, salad dressings, and sauces produced in the United States: a review. J. Food Prot. 63: 1144–1158 (2000)

    Article  CAS  Google Scholar 

  35. Kobayashi F, Ikeura H, Odake S, Tanimoto S, Hayata Y. Inactivation of Lactobacillus fructivorans suspended in various buffer solutions by low-pressure CO2 microbubbles. LWT-Food Sci. and Technol. 48: 330–333 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayla Unver Alcay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bostan, K., Unver Alcay, A., Yalçin, S. et al. Identification and characterization of lactic acid bacteria isolated from traditional cone yoghurt. Food Sci Biotechnol 26, 1625–1632 (2017). https://doi.org/10.1007/s10068-017-0222-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0222-z

Keywords