Skip to main content
Log in

Biological activities of lactobacilli relevant to cardiovascular health in skim milk

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, skim milk was fermented using 14 Lactobacillus strains for 16 h at 42 °C or for 48 h at 25 °C. On conclusion of fermentation, the proteolytic, angiotensin converting enzyme-inhibitory (ACE-I), and antioxidant activities as well as the inhibition of thrombin and cholesterol micellar solubility were determined. The results revealed that Lb. paracasei B-4564 exhibited the highest ACE-I activity (68.11%) under the 42 °C for 16 h condition, while Lb. rhamnosus B-1445 demonstrated the highest ACE-I activity (92.23%) under the 25 °C for 48 h condition. Lb. paracasei B-4564 exhibited the highest inhibition rate of thrombin (42.43 and 48.10%) and cholesterol (68.60 and 87.01%) under the 42 °C for 16 h and 25 °C for 48 h conditions, receptively. Lb. rhamnosus B-442 exhibited the highest DPPH radical scavenging activity of 95.63 and 62.89% under the 42 °C for 16 h and 25 °C for 48 h conditions, receptively. Lb. rhamnosus B-1445 demonstrated the highest Fe2+ chelating activity and reducing power under both the tested fermentation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gemechu T. Review on lactic acid bacteria function in milk fermentation and preservation. Afri. J. Food Sci. 9: 170–175 (2015)

    Article  CAS  Google Scholar 

  2. Park YW, Nam MS. Bioactive peptides in milk and dairy products: a review. Korean J. Food Sci. Anim. Res. 35: 831–840 (2015)

    Article  Google Scholar 

  3. Korhonen H, Pihlanto A. Review: bioactive peptides: production and functionality. Int. Dairy J. 16: 945–960 (2006)

    Article  CAS  Google Scholar 

  4. Nagpal R, Behare P, Rana R, Kumar A, Kumar M, Arora S, Morotta F, Jain S, Yadav H. Bioactive peptides derived from milk proteins and their health beneficial potentials: an update. Food Funct. 2: 18–27 (2011)

    Article  CAS  Google Scholar 

  5. Chaves-López C, Serio A, Paparella A, Martuscelli M, Corsetti A, Tofalo R, Suzzi G. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiol. 42: 117–121 (2014)

    Article  Google Scholar 

  6. Chen Y, Li C, Xue J, Kwok L, Yang J, Zhang H, Menghe B. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus. J. Dairy Sci. 98: 1–12 (2015)

    Article  Google Scholar 

  7. Nejati F, Rizzello CG, Di Cagno R, Sheikh-Zeinoddin M, Diviccaro A, Minervini F, Gobbetti M. Manufacture of a functional fermented milk enriched of Angiotensin-I Converting Enzyme (ACE)-inhibitory peptides and γ-amino butyric acid (GABA). LWT-Food Sci. Techno. 51: 183–189 (2013)

    Article  CAS  Google Scholar 

  8. Gonzalez-Gonzalez CR, Tuohy KM, Jauregi P. Production of angiotensin-I-converting enzyme (ACE) inhibitory activity in milk fermented with probiotic strains: Effects of calcium, pH and peptides on the ACE-inhibitory activity. Int. Dairy J. 21: 615–622 (2011)

    Article  CAS  Google Scholar 

  9. Nielsen MS, Martinussen T, Flambard B, Sørensen KI, Otte J. Peptide profiles and angiotensin- I-converting enzyme inhibitory activity of fermented milk products: Effect of bacterial strain, fermentation pH, and storage time. Int. Dairy J. 19: 155–165 (2009)

    Article  CAS  Google Scholar 

  10. Fuglsang A, Rattray FP, Nilsson D, Nyborg NCB. Lactic acid bacteria: inhibition of angiotensin converting enzymes in vitro and in vivo. Antonie Leeuwenhoek 83: 27–34 (2003)

    Article  CAS  Google Scholar 

  11. Kilpi E, Kahala M, Steele J, Pihlanto A, Joutsjoki V. Angiotensin I-converting enzyme inhibitory activity in milk fermented by wild-type and peptidase-deletion derivatives of Lactobacillus helveticus CNRZ32. Int. Dairy J. 17: 976–984 (2007)

    Article  CAS  Google Scholar 

  12. Meisel H. Multifunctional peptides encrypted in milk proteins. Biofactor. 21: 55–61 (2004)

    Article  CAS  Google Scholar 

  13. de Giori GS, de Valdez GF, de Ruiz Holgado AP, Oliver G. Effect of pH and temperature on the proteolytic activity of lactic acid bacteria. J. Dairy Sci. 68: 2160–2164 (1985)

    Article  Google Scholar 

  14. Hassaïne O, Zadi-Karam H and Karam N. Technologically important properties of lactic acid bacteria isolated from raw milk of three breeds of Algerian dromedary (Camelus dromedarius). Afri. J. Biotechno. 6: 1720–1727 (2007)

    Google Scholar 

  15. Korhonen HJ. Bioactive components in bovine milk. Wiley, Ames, IA, USA (2009)

    Book  Google Scholar 

  16. AOAC. Official Methods of Analysis of AOAC Intl. 17th ed. Method 947.05. Association of Official Analytical Chemists, Washington, DC. USA (2000)

  17. Shori AB, Baba AS, Chuah PF. The effects of fish collagen on the proteolysis of milk proteins, ACE inhibitory activity and sensory evaluation of plain- and Allium sativum-yogurt. J. Taiwan Inst. Chem. Eng. 44: 701–706 (2013)

    Article  CAS  Google Scholar 

  18. Luo Y, Pan K, Zhong Q. Physical, chemical and biochemical properties of casein hydrolyzed by three proteases: partial characterizations. Food Chem. 155: 146–155 (2014)

    Article  CAS  Google Scholar 

  19. Zhang SB. In vitro antithrombotic activities of peanut protein hydrolysates. Food Chem. 202: 1–8 (2016)

    Article  CAS  Google Scholar 

  20. Zhong F, Zhang X, Ma J. Shoemaker CF. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates. Food Res. Int. 40: 756–762 (2007)

    Article  CAS  Google Scholar 

  21. Li Y, Liu T, He G. Antioxidant activity of peptides from fermented milk with mix culture of lactic acid bacteria and yeast. Adv. J. Food Sci. Technol. 7: 422–427 (2015)

    Article  CAS  Google Scholar 

  22. Rahmawatia IS, Suntornsuk W. Effects of fermentation and storage on bioactive activities in milks and yoghurts. Procedia Chem. 18: 53–62 (2016)

    Article  Google Scholar 

  23. Donkor ON, Henriksson A, Vasiljevic T, Shah NP. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Lait 86: 21–38 (2007)

    Article  Google Scholar 

  24. Li GH, Le GW, Shi YH, Shrestha S. Angiotensin I-converting enzyme inhibitory peptides derived from food proteins and their physiological and pharmacological effects. Nutr. Res. 24: 469–486 (2004)

    Article  CAS  Google Scholar 

  25. Pihlanto A, Virtanen T, Korhonen H. Angiotensin I converting enzyme (ACE) inhibitory activity and antihypertensive effect of fermented milk. Int. Dairy J. 20: 3–10 (2010)

    Article  CAS  Google Scholar 

  26. Piazza G, Seddighzadeh A, Goldhaber SZ. Heart failure in patients with deep vein thrombosis. Am. J. Cardiol. 101: 1056–1059 (2008)

    Article  Google Scholar 

  27. Chalé FH, Ruiz JCR, Ancona DB, Fernándezc JJA, Campos MRS. The hypolipidemic effect and antithrombotic activity of Mucuna pruriens protein hydrolysates. Food Funct. 7: 434–444 (2016)

    Article  Google Scholar 

  28. Sharma S, Singh R, Rana, S. Bioactive Peptides: A Review. Int. J. Bioautomation. 15: 223–250 (2011)

    CAS  Google Scholar 

  29. Rojas-Ronquillo R, Cruz-Guerrero A, Flores-Nájera A, Rodríguez-Serrano GG, Gómez-Ruiz L, Reyes-Grajeda JP, Jiménez-Guzmán J, García-Garibay M. Antithrombotic and angiotensin-converting enzyme inhibitory properties of peptides released from bovine casein by Lactobacillus casei Shirota. Int. Dairy J. 26: 147–154 (2012)

    Article  CAS  Google Scholar 

  30. Oh NS, Kwon HS, Lee HA, Joung JY, Lee JY, Lee KB, Shin YK, Baick SC, Park MR, Kim Y, Lee KW, Kim SH. Preventive effect of fermented Maillard reaction products from milk proteins in cardiovascular health. J. Dairy Sci. 97: 3300–3313 (2014)

    Article  CAS  Google Scholar 

  31. Jollès P, Levy-Toledano S, Fiat AM, Soria C, Gillessen D, Thomaidis A, Dunn FW, Caen JP. Analogy between fibrinogen and casein. Effect of an undecapeptide isolated from kappa-casein on platelet function. Euro. J. Biochem. 158: 379–382 (1986)

    Google Scholar 

  32. Megias C, Pedroche J, Del Mar Yust M, Alaiz M, Giron-Calle J, Millan F, Vioque J. Sunflower protein hydrolysates reduce cholesterol micellar solubility. Plant Foods Hum. Nutr. 64: 86–93 (2009)

    Article  CAS  Google Scholar 

  33. Moslehishad M, Ehsani MR, Salami M, Mirdamadi S, Ezzatpanah H, Naslaji AN, Moosavi-Movahedi AA. The comparative assessment of ACE-inhibitory and antioxidant activities of peptide fractions obtained from fermented camel and bovine milk by Lactobacillus rhamnosus PTCC 1637. Int. Dairy J. 29: 82–87 (2013)

    Article  CAS  Google Scholar 

  34. Sah BN, Vasiljevic T, McKechnie S, Donkor O. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem. 156: 264–270 (2014)

    Article  CAS  Google Scholar 

  35. Abubakr MAS, Hassan Z, Imdakim MMA, Sharifah NRSA. Antioxidant activity of lactic acid bacteria (LAB) fermented skim milk as determined by 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferrous chelating activity (FCA). Afr. J. Microbiol. Res. 6: 6358–6364 (2012)

    CAS  Google Scholar 

  36. Pena-Ramos EA, Xiong YL. Antioxidant activity of whey protein hydrolysates in a liposomal system. J. Dairy Sci. 84: 2577–2583 (2001)

    Article  CAS  Google Scholar 

  37. Li S, Zhao Y, Zhang L, Zhang X, Huang L, Li D, Niu C, Yang Z, Wang Q. Antioxidant activity of Lactobacillus plantarum strains isolated from traditional Chinese fermented foods. Food Chem. 135: 1914–1919 (2012)

    Article  CAS  Google Scholar 

  38. Elfahri KR, Vasiljevic T, Yeager T, Donkor ON. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains. J. Dairy Sci. 99: 1–10 (2016)

    Article  Google Scholar 

  39. Virtanen T, Pihlanto A, Akkanen S, Korhonen H. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria. J. Appl. Microbiol. 102: 106–115 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Agriculture Research Service (ARS) Culture Collection, Norwegian Radio Relay League (NRRL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samia Mahmoud El-Dieb.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abd El-Fattah, A., Sakr, S., El-Dieb, S.M. et al. Biological activities of lactobacilli relevant to cardiovascular health in skim milk. Food Sci Biotechnol 26, 1613–1623 (2017). https://doi.org/10.1007/s10068-017-0219-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0219-7

Keywords

Navigation