Fabrication of an electrochemical biosensor with ZnO nanoflakes interface for methylglyoxal quantification in food samples


Increased consumption of fried foods such as grilled chicken contains elevated levels of methylglyoxal (MG), which is associated with diabetes mellitus. Hence, in this work, glyoxalase 1(GLO 1) based, zinc oxide (ZnO) flakes interfaced mediator free electrochemical biosensor was developed to detect MG in grilled chicken. ZnO flakes were synthesized by direct precipitation method. X-ray diffractometer and field emission scanning electron microscope were used to study the structural and morphological characteristics of ZnO flakes. The immobilization of GLO 1 on Pt/ZnO flakes modified electrode was confirmed by Fourier transform infrared spectroscopy. Cyclic voltammetric and amperometric studies were carried out using Pt/ZnO flakes/GLO 1 working electrode. The developed biosensor exhibited linear range of 0.6–2.0 µM, sensitivity of 0.281 µA µM−1, LOD of 9 nM with a response time of <4 s and shelf life of 18 days (89%).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3


  1. 1.

    Singh R, Barden A, Mori T BL. Advanced glycation end-products: a review. Diabetologia. 2001;44(2): 129–146

    CAS  Article  Google Scholar 

  2. 2.

    Committee on Toxicity Statement on Methylglyoxal. Vol. 34, Committee on Toxicity. 2009

  3. 3.

    Mark AB, Poulsen MW, Andersen S, Andersen JM, Bak MJ, Ritz C, Holst JJ, Nielsen J, De Courten B, Dragsted LO, Bügel SG. Consumption of a diet low in advanced glycation end products for 4 weeks improves insulin sensitivity in overweight women. Diabetes Care. 2014;37: 88–95. https://doi.org/10.2337/dc13-0842

  4. 4.

    Bin L, Bihao C, Jiang S (2012) Ice-temperature storage technology of fruits and vegetables. In: Valdez B (Ed.) Food industrial processes—methods and equipment. InTech. http://www.intechopen.com/books/food-industrial-processes-methods-and-equipment/ice-temperature-storage-technology-of-fruits-and-vegetables

  5. 5.

    Uribarri J, Woodruff S, Goodman S, Cai W, Chen X, Pyzik R, Yong A, Striker GE, Vlassara H. Advanced Glycation End Products in Foods and a Practical Guide to Their Reduction in the Diet. J Am Diet Assoc. 2010;10(6): 911–916

  6. 6.

    Ansari SA, Husain Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotechnol Adv. 2012;30(3): 512–523

  7. 7.

    National Diabetes Fact Sheet—Centers for Disease Control and Prevention; U.S. Department of Health and Human Services. 2011;CS217080A(Division of Diabetes Translation): 1–12

  8. 8.

    “50 million people in India have diabetes.” The Indian Express. 2012;1030869. http://archive.indianexpress.com/news/-50-million-people-in-india-have-diabetes-/1030869/

  9. 9.

    “Diabetes capital” tag a burden on India’s heart. HindustanTimes. Lucknow; 2013. http://www.hindustantimes.com/lucknow/diabetes-capital-tag-a-burden-on-india-s-heart/story-UzEjAj4EXP2MJjTaLlIO9O.html

  10. 10.

    Kalousová M, Zima T, Tesař V, Dusilová-Sulková S, Škrha J. Advanced glycoxidation end products in chronic diseases—clinical chemistry and genetic background. Mutat Res Fundam Mol Mech Mutagen. 2005;579(1–2): 37–46

    Article  Google Scholar 

  11. 11.

    Sassolas A, Blum LJ, Leca-Bouvier BD. Immobilization strategies to develop enzymatic biosensors. Biotechnol Adv. 2012;30(3): 489–511

  12. 12.

    FDI General Assembly. Non-Communicable Diseases. FDI General Assembly. Hong Kong; 2012

    Google Scholar 

  13. 13.

    Thangavel A, Alagesan S, Nesakumar N, Ramachandra BL, Gumpu MB, Vedantham S, Sethuraman S, Krishnan UM, Rayappan JBB. Optimization of Electrochemical Parameters for Specific Blood Methylglyoxal Determination Using ZnO Sepals Based Glyoxalase 1 Biosensor. Sens Lett. 2015;13(4): 328–337

  14. 14.

    Chatterjee S, Chen A. Voltammetric detection of the dicarbonyl compound: Methylglyoxal as a flavoring agent in wine and beer. Anal Chim Acta. 2012;751: 66–70. https://doi.org/10.1016/j.aca.2012.09.011

  15. 15.

    Chatterjee S, Wen J, Chen A. Electrochemical determination of methylglyoxal as a biomarker in human plasma. Biosens Bioelectron. 2013;42(1): 349–354

    CAS  Article  Google Scholar 

  16. 16.

    Ren X, Chen D, Meng X, Tang F, Hou X, Han D, Zhang L. Zinc oxide nanoparticles/glucose oxidase photoelectrochemical system for the fabrication of biosensor. J Colloid Interface Sci. 2009;334(2): 183–187

  17. 17.

    Petchthanasombat C, Tiensing T, Sunintaboon P. Synthesis of zinc oxide-encapsulated poly(methyl methacrylate)-chitosan core-shell hybrid particles and their electrochemical property. J Colloid Interface Sci. 2012;369(1): 52–57

  18. 18.

    Nesakumar N, Thandavan K, Sethuraman S, Krishnan UM, Rayappan JBB. An electrochemical biosensor with nanointerface for lactate detection based on lactate dehydrogenase immobilized on zinc oxide nanorods. J Colloid Interface Sci. 2014;414(xx): 90–96. https://doi.org/10.1016/j.jcis.2013.09.052

  19. 19.

    Singh M, Nesakumar N, Sethuraman S, Krishnan UM, Rayappan JBB. Electrochemical biosensor with ceria-polyaniline core shell nano-interface for the detection of carbonic acid in blood. J Colloid Interface Sci. 2014;425: 52–58. https://doi.org/10.1016/j.jcis.2014.03.041

  20. 20.

    Ezhilan M, Alagesan S, Ramachandra BL, Gumpu MB, Nesakumar N, Vedantham S, Sethuraman S, Krishnan UM, Rayappan, JBB. Chemometric Analysis for the Determination of Methylglyoxal in Grilled Chicken Using ZnO Flakes Based Glyoxalase 1 Biosensor. Sens Lett. 2015;13(3): 245–253

  21. 21.

    Ramachandra BL, Vedantham S, Krishnan UM, Nesakumar N, Balaguru Rayappan JB. Estimation of methylglyoxal in cow milk – an accurate electrochemical response time based approach. Anal Methods. 2016;8(10): 2207–2217. Available from: http://xlink.rsc.org/?DOI=C5AY02901E

  22. 22.

    Chaplen FWR. Incidence and potential implications of the toxic metabolite methylglyoxal in cell culture: a review. Cytotechnology. 1998;26(3): 173–183

    CAS  Article  Google Scholar 

  23. 23.

    Dem’yanets LN, Li LE, Uvarova TG. Zinc oxide: hydrothermal growth of nano- and bulk crystals and their luminescent properties. J Mater Sci. 2006;41(5): 1439–1444

    Article  Google Scholar 

  24. 24.

    Rodríguez-Paéz JE, Caballero AC, Villegas M, Moure C, Durán P, Fernández JF. Controlled precipitation methods: formation mechanism of ZnO nanoparticles. J Eur Ceram Soc. 2001;21(7): 925–930

    Article  Google Scholar 

  25. 25.

    Suchea M, Christoulakis S, Moschovis K, Katsarakis N, Kiriakidis G. ZnO transparent thin films for gas sensor applications. Thin Solid Films. 2006;515(2 SPEC. ISS.): 551–554

    CAS  Article  Google Scholar 

  26. 26.

    Kannan PK, Saraswathi R, Rayappan JBB. A highly sensitive humidity sensor based on DC reactive magnetron sputtered zinc oxide thin film. Sens Actuators A Phys. 2010;164(1–2): 8–14

    CAS  Google Scholar 

  27. 27.

    Mani GK, Rayappan JBB. A highly selective room temperature ammonia sensor using spray deposited zinc oxide thin film. Sens Actuators B Chem. 2013;183: 459–466

  28. 28.

    Zhao Z, Lei W, Zhang X, Wang B, Jiang H. ZnO-based amperometric enzyme biosensors. Sensors. 2010;10(2): 1216–1231

    CAS  Article  Google Scholar 

  29. 29.

    Raoufi D, Raou D. Synthesis and microstructural properties of ZnO nanoparticles prepared by precipitation method. Renew Energy. 2013;50: 932–937

    CAS  Article  Google Scholar 

  30. 30.

    Arya SK, Saha S, Ramirez-Vick JE, Gupta V, Bhansali S, Singh SP. Recent advances in ZnO nanostructures and thin films for biosensor applications: Review. Anal Chim Acta. 2012;737: 1–21

  31. 31.

    Sivalingam D, Gopalakrishnan JB, Rayappan JBB. Structural, morphological, electrical and vapour sensing properties of Mn doped nanostructured ZnO thin films. Sens Actuators B Chem. 2012;166–167: 624–631

  32. 32.

    Yakimova R. ZnO materials and surface tailoring for biosensing. Front Biosci E. 2012;4(1): 254

    Article  Google Scholar 

  33. 33.

    Ali SMU, Ibupoto ZH, Kashif M, Hashim U, Willander M. A potentiometric indirect uric acid sensor based on ZnO nanoflakes and immobilized uricase. Sensors. 2012;12(3): 2787–2797

    Article  Google Scholar 

  34. 34.

    Fulati A, Ali SMU, Asif MH, Alvi NUH, Willander M, Brännmark C, Strålfors P, Börjesson SI, Elinder F, Danielsson B. An intracellular glucose biosensor based on nanoflake ZnO. Sens Actuators B Chem. 2010;150(2): 673–680

  35. 35.

    Bu IYY, Yang CC. High-performance ZnO nanoflake moisture sensor. Superlattices Microstruct. 2012;51(6): 745–753

  36. 36.

    Wahab R, Kim Y-S, Shin H-S. Synthesis, characterization and effect of pH variation on zinc oxide nanostructures. Mater Trans. 2009;50(8): 2092–2097

    CAS  Article  Google Scholar 

  37. 37.

    Dermenci KB, Ebin B, Gürmen S. Production of spherical Ag/ZnO nanocomposite particles for photocatalytic applications. Int J Chem Mol Nucl Mater Metall Eng. 2012;6(7): 570–572

    Google Scholar 

  38. 38.

    Hou Z, Wang Y, Shen L, Guo H, Wang G, Li Y, Zhou S. Synthesis of dumbbell-like ZnO microcrystals via a simple solution route. Nanoscale Res Lett. 2012;7(1): 1

    Article  Google Scholar 

  39. 39.

    Yao L, Zheng M, Li C, Ma L, Shen W. Facile synthesis of superhydrophobic surface of ZnO nanoflakes: chemical coating and UV-induced wettability conversion. Nanoscale Res Lett. 2012;7: 216

    Article  Google Scholar 

  40. 40.

    Hamedani NF, Farzaneh F. Synthesis of ZnO nanocrystals with hexagonal (wurtzite) structure in water using microwave irradiation. Sci Islam Repub Iran. 2006;17(3): 231–234

    CAS  Google Scholar 

  41. 41.

    Coates J. Interpretation of Infrared Spectra, A Practical Approach. In: Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd; 2006

  42. 42.

    Scirè A, Saccucci F, Bertoli E, Cambria MT, Principato G, D’Auria S, Tanfani F. Effect of acidic phospholipids on the structural properties of recombinant cytosolic human glyoxalase II. Proteins Struct Funct Genet. 2002;48(1): 126–133

    Article  Google Scholar 

  43. 43.

    Liu Y, Yang Z, Du J, Yao X, Lei R, Zheng X, Liu J, Hu H, Li H. Study on the interactions of kaempferol and quercetin with intravenous immunoglobulin by fluorescence quenching, Fourier transformation infrared spectroscopy and circular dichroism spectroscopy. Chem Pharm Bull 2008;56(4): 443–451

    CAS  Article  Google Scholar 

  44. 44.

    Nikitina O, Shleev S, Gayda G, Demkiv O, Gonchar M, Gorton L, Csöregi E, Nistor M. Bi-enzyme biosensor based on NAD- and glutathione-dependent recombinant formaldehyde dehydrogenase and diaphorase for formaldehyde assay. Sens Actuators B Chem. 2007;125: 1–9

    CAS  Article  Google Scholar 

Download references


The authors are grateful to the Department of Science and Technology, New Delhi, for their financial support (DST/TSG/PT/2008/28, SR/FST/ETI-284/2011(C) and (Nano Mission Council (No. SR/NM/PG-16/2007)). We also acknowledge SASTRA University, Thanjavur for extending infrastructural support to carry out the study.

Author information



Corresponding author

Correspondence to John Bosco Balaguru Rayappan.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jayaprakasan, A., Thangavel, A., Ramachandra Bhat, L. et al. Fabrication of an electrochemical biosensor with ZnO nanoflakes interface for methylglyoxal quantification in food samples. Food Sci Biotechnol 27, 9–17 (2018). https://doi.org/10.1007/s10068-017-0193-0

Download citation


  • Biosensor
  • ZnO flakes
  • Human glyoxalase 1
  • Methylglyoxal
  • Cyclic voltammetry
  • Amperometry