Skip to main content

Advertisement

Log in

Anti-inflammatory and anti-genotoxic activity of branched chain amino acids (BCAA) in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate the anti-inflammatory and anti-genotoxic activity of branched-chain amino acids (BCAAs) in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. BCAAs inhibited LPS-induced NO production, with 100 mM leucine having the most pronounced effect, suppressing NO production by 81.15%. Valine and isoleucine also reduced NO production by 29.65 and 42.95%, respectively. Furthermore, BCAAs suppressed the inducible nitric oxide synthase mRNA expression. Additionally, BCAAs decreased the mRNA expression of interleukin-6 and cyclooxygenase-2 which are proinflammatory mediators. Anti-genotoxic activities of BCAAs were assessed using the alkaline comet assay and valine, isoleucine, and leucine significantly (p < 0.05) decreased tail length of DNA (damaged portion) to 254.8 ± 7.5, 235.6 ± 5.6, and 271.5 ± 19.9 μm compared than positive control H2O2 (434.3 ± 51.3 μm). These results suggest that BCAAs can be used in the pharmaceutical or functional food industries as anti-inflammatory agents or anti-cancer agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kim J, Kim JS, Park E. Cytotoxic and anti-inflammatory effects of onion peel extract on lipopolysaccharide stimulated human colon carcinoma cells. Food Chem. Toxicol. 62: 199–204 (2013)

    Article  CAS  Google Scholar 

  2. Ahn CB, Cho YS, Je JY. Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chem. 168: 151–156 (2015)

    Article  CAS  Google Scholar 

  3. Jeong JB, Shin YK, Lee SH. Anti-inflammatory activity of patchouli alcohol in RAW264.7 and HT-29 cells. Food Chem. Toxicol. 55: 229–233 (2013)

    Article  CAS  Google Scholar 

  4. Yang S, Zhang W, Zhen Q, Gao R, Du T, Xiao X, Wang Z, Ge Q, Hu J, Ye P, Zhu Q, Li Q. Impaired adipogenesis in adipose tissue associated with hepatic lipid deposition induced by chronic inflammation in mice with chew diet. Life Sci. 137: 7–13 (2015)

    Article  CAS  Google Scholar 

  5. Naugler WE, Karin M. NF-kappaB and cancer-identifying targets and mechanisms. Curr. Opin. Genet. Dev. 18: 19–26 (2008)

    Article  CAS  Google Scholar 

  6. Walsh NC, Crotti TN, Goldring SR, Gravallese EM. Rheumatic diseases: the effects of inflammation on bone. Immunol. Rev. 208: 228–251 (2005)

    Article  CAS  Google Scholar 

  7. Cini M, Fariello RG, Bianchetti A, Moretti A. Studies on lipid peroxidation in the rat brain. Neurochem. Res. 19: 283–288 (1994)

    Article  CAS  Google Scholar 

  8. El-Khamisy SF, Caldecott KW. TDP1-dependent DNA single-strand break repair and neurodegeneration. Mutagenesis 21: 219–224 (2006)

    Article  CAS  Google Scholar 

  9. Halliwell B. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment. Drugs Aging 18: 685–716 (2001)

    Article  CAS  Google Scholar 

  10. Coussens LM, Werb Z. Inflammation and cancer. Nature 420: 860–867 (2002)

    Article  CAS  Google Scholar 

  11. Fernstrom JD. Branched-chain amino acids and brain function. J. Nutr. 135: 1539S–1546S (2005)

    CAS  Google Scholar 

  12. Brosnan JT, Brosnan ME. Branched-chain amino acids: Enzyme and substrate regulation. J. Nutr. 136: 207S–211S (2006)

    CAS  Google Scholar 

  13. O’Connell TM. The complex role of branched chain amino acids in diabetes and cancer. Metabolites 3: 931–945 (2013)

    Article  Google Scholar 

  14. Gleeson MC. Interrelationship between physical activity and branched-chain amino acids. J. Nutr. 135: 1591S–1595S (2005)

    CAS  Google Scholar 

  15. Ichikawa K, Okabayashi T, Shima Y, Iiyama T, Takezaki Y, Munekage M, Namikawa T, Sugimoto T, Kobayashi M, Mimura T, Hanazaki K. Branched-chain amino acid-enriched nutrients stimulate antioxidant DNA repair in a rat model of liver injury induced by carbon tetrachloride. Mol. Biol. Rep. 39: 10803–10810 (2012)

    Article  CAS  Google Scholar 

  16. Togo S, Tanaka K, Morioka D, Sugita M, Ueda M, Miura Y, Kubota T, Nagano Y, Matsuo K, Endo I, Sekido H, Shimada H. Usefulness of granular BCAA after hepatectomy for liver cancer complicated with liver cirrhosis. Nutrition 21: 480–486 (2005)

    Article  CAS  Google Scholar 

  17. Kuwahata M, Kubota H, Kanouchi H, Ito S, Ogawa A, Kobayashi Y, Kido Y. Supplementation with branched-chain amino acids attenuates hepatic apoptosis in rats with chronic liver disease. Nutr. Res. 32: 522–529 (2012)

    Article  CAS  Google Scholar 

  18. Moon SH, Lee JH, Lee M, Park E, Ahn DU, Paik HD. Cytotoxic and antigenotoxic activities of phosvitin from egg yolk. Poult. Sci. 93: 2103–2107 (2004)

    Article  Google Scholar 

  19. Marcocci L, Magurie JJ, Droy-Lefaiz MT, Packer L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGB 761. Biochem. Biophys. Res. Commun. 201: 748–755 (1994)

    Article  CAS  Google Scholar 

  20. Guastadisegni C, Nicolini A, Balduzzi M, Ajmone-Cat MA, Minghetti L. Modulation of PGE2 and TNF-alpha by nitric oxide in resting and LPS-activated RAW 264.7 cells. Cytokine 19: 175–180 (2002)

    Article  CAS  Google Scholar 

  21. Kim HH, Park GH, Park KS, Lee JY, An BJ. Anti-oxidant and anti-inflammation activity of fractions from Aster glehni Fr. Schm. J. Microbiol. Biotechnol. 38: 434–441 (2010)

    CAS  Google Scholar 

  22. Sharma JN, Al-Omran A, Parvathy SS. Role of nitric oxide in inflammatory diseases. Inflammopharmacology 15: 252–259 (2007)

    Article  CAS  Google Scholar 

  23. Kim ND, Kim EM, Kang KW, Cho Mk, Choi SY, Kim SG. Ginsenoside Rg3 inhibits phenylephrine-induced vascular contraction through induction of nitric oxide synthase. Brit. J. Pharmacol. 140: 661–670 (2003)

    CAS  Google Scholar 

  24. Kumar AP, Ryan C, Cordy V, Reynolds WF. Inducible nitric oxide synthase expression is inhibited by myeloperoxidase. Nitric Oxide 13: 42–53 (2005)

    Article  CAS  Google Scholar 

  25. Yang F, Comtois AS, Fang L, Hartman NG, Blaise G. Nitric oxide-derived nitrate anion contributes to endotoxic shock and multiple organ injury/dysfunction. Crit. Care Med. 30: 650–657 (2002)

    Article  CAS  Google Scholar 

  26. van der Woude CJ, Kleibeuker JH, Jansen PL, Moshage H. Chronic inflammation, apoptosis and (pre-)malignant lesions in the gastro-intestinal tract. Apoptosis 9: 123–130 (2004)

    Article  Google Scholar 

  27. Jin HJ, Lee JH, Kim DH, Kim KT, Lee GH, Choi SJ, Chang PS, Paik HD. Antioxidative and nitric oxide scavenging activity of branched-chain amino acids. Food Sci. Biotechnol. 24: 1555–1558 (2015)

    Article  CAS  Google Scholar 

  28. Dinarello CA. Cytokines as endogenous pyrogens. J. Infect. Dis. 179: S294–S304 (1999)

    Article  CAS  Google Scholar 

  29. Nasraway SA. The problems and challenges of immunotherapy in sepsis. Chest 123: 451S–459S (2003)

    Article  CAS  Google Scholar 

  30. Smith WL, Garavito RM, Dewitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol. Chem. 271: 33157–33160 (1996)

    Article  CAS  Google Scholar 

  31. Claria J. Cyclooxygenass-2 biology. Curr. Pharm. Design. 9: 2177–2190 (2003)

    Article  CAS  Google Scholar 

  32. Liao W, McNutt MA, Zhu WG. The comet assay: A sensitive method for detecting DNA damage in individual cells. Methods 48: 46–53 (2009)

    Article  CAS  Google Scholar 

  33. Nakanishi M, Niida H, Murakami H, Shimada M. DNA damage responses in skin biology-implications in tumor prevention and aging acceleration. J. Dermatol. Sci. 56: 76–81 (2009)

    Article  CAS  Google Scholar 

  34. Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem. Biophys. Res. Commun. 331: 761–777 (2005)

    Article  CAS  Google Scholar 

  35. Boyacioglu M, Sekkin S, Kum C, Korkmaz D, Kiral F, Yalinkilinc HS, Ak MO, Akar F. The protective effects of vitamin C on the DNA damage, antioxidant defenses and aorta histopathology in chronic hyperhomocysteinemia induced rats. Exp. Toxicol. Pathol. 66: 407–413 (2014)

    Article  CAS  Google Scholar 

  36. Aydin S, Tokac M, Taner G, Arikok AT, Dundar HZ, Ozkardes AB, Taslipinar MY, Kilic M, Basaran AA, Basaran N. Antioxidant and antigenotoxic effects of lycopene in obstructive jaundice. J. Surg. Res. 182: 285–295 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the High Value-added Food Technology Development Program (313021-3) of the Ministry of Agriculture, Food and Rural Affairs (Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Dong Paik.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J.H., Park, E., Jin, H.J. et al. Anti-inflammatory and anti-genotoxic activity of branched chain amino acids (BCAA) in lipopolysaccharide (LPS) stimulated RAW 264.7 macrophages. Food Sci Biotechnol 26, 1371–1377 (2017). https://doi.org/10.1007/s10068-017-0165-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0165-4

Keywords

Navigation