Skip to main content
Log in

Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Thermotolerant yeast strains were isolated from nuruk, a traditional Korean fermentation starter in which variety of microorganisms are present. Among the isolates, the MBY1358 identified as yeast Pichia kudriavzevii showed significantly higher growth rate (0.59 ± 0.00 1/h) at 44 °C than other strains. Maximum ethanol concentration of 8.35 ± 0.03 g/L was obtained from 20 g/L glucose with yield of 0.44 ± 0.01 g/g at 44 °C, which is 1.14 times ethanol production of the control strain of P. kudriavzevii. The MBY1358, which was significantly more thermotolerant than the control strain and fermented 200 g/L glucose to 107.33 ± 5.03 g/L ethanol at 44 °C, was deposited to Korean Collection for Type Cultures (KCTC) under the accession number 27654.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Caspeta L, Nielsenb J. Thermotolerant yeast strains adapted by laboratory evolution show trade-off at ancestral emperatures and preadaptation to other stresses. MBio 6: 4 (2015)

    Article  Google Scholar 

  2. Shinechi H, Koh J, Fujita Y, Matsumoto T, Bito Y, Ueda M. Direct production of ethanol from raw corn starch via fermentation by use of a novel surface-engineered yeast strain codisplaying glucoamylase and α-amylase. Appl. Environ. Microbiol. 70: 5037-5040 (2004)

    Article  Google Scholar 

  3. Caspeta L, Buijs NAA, Nielsen J. The role of biofuels in the future energy supply. Energy Environ. Sci. 6: 1077-1082 (2013)

    Article  CAS  Google Scholar 

  4. Lynd LR, Cushman JH, Nichols RJ, Wyman CE. Fuel ethanol from cellulosic biomass. Science 251: 1318-1323 (1991)

    Article  CAS  Google Scholar 

  5. Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R. High-temperature fermentation: how can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl. Microbiol. Biotechnol. 85: 861-867 (2010)

    Article  CAS  Google Scholar 

  6. Abreu-Cavalheiro AMG, Monteiro G. Solving ethanol production problems with genetically modified yeast strains. Braz. J. Microbiol. 44: 665-671 (2013)

    Article  CAS  Google Scholar 

  7. Matsumoto N, Fukushi O, Miyanaga M, Kakihara K, Nakajima E, Yoshizumi H. Industrialization of a noncooking system for alcoholic fermentation from grains. Agric. Biol. Chem. 46: 1549-1558 (1982)

    CAS  Google Scholar 

  8. Edgardo A, Carolina P, Manuel R, Juanita F, Jaime B. Selection of thermotolerant yeast strains Saccharomyces cerevisiae for bioethanol production. Enzyme. Microb. Tech. (2008)

    Google Scholar 

  9. Song SH, Lee C, Lee S, Park JM, Lee HJ, Bai DH. Analysis of microflora profile in Korean traditional Nuruk. J. Microbiol. Biotechnol. 23: 40-46 (2013)

    Article  CAS  Google Scholar 

  10. Kim HS, Hyun JS, Kim J, Ha HP, Yu TS. Characteristics of useful fungi isolated from traditional korean Nuruk. J. Korean Soc. Food Sci. Nutr. 26: 767-774 (1997)

    Google Scholar 

  11. Park JH, Chung CH. Characteristics of Takju (a cloudy korean rice wine) prepared with Nuruk (a traditional korean rice wine fermentation starter), and identification of lactic acid bacteria in Nuruk. Korean J. Food Sci. Technol. 46: 153-164 (2014)

    Article  Google Scholar 

  12. Rhee SJ, Lee JT, Kim KK, Lee CH. Comparison of the traditional (samhaeju) and industrial (cheongju) rice wine brewing in Korea. Korean J. Food Sci. Technol. 12: 242-247 (2003)

    CAS  Google Scholar 

  13. Kang SH, Kim HR, Kim JH, Ahn BH, Kim TW, Lee JE. Identification of wild yeast strains and analysis of their b-glucan and glutathione levels for use in Makgeolli brewing. Mycobiology 42: 361-367 (2014)

    Article  Google Scholar 

  14. Ilmén M, Koivuranta K, Ruohonen L, Suominen P, Penttilä M. Efficient production of L-lactic acid from xylose by Pichia stipitis. Appl. Environ. Microbiol. 73: 117-123 (2006)

    Article  Google Scholar 

  15. Jiménez JJ, Borrero J, Diep DB, Gútiez L, Nes IF, Herranz C. Cloning, production, and functional expression of the bacteriocin sakacin A (SakA) and two SakA-derived chimeras in lactic acid bacteria (LAB) and the yeasts Pichia pastoris and Kluyveromyces lactis. J. Ind. Microbiol. Biotechnol. 40: 977-993 (2013)

    Article  Google Scholar 

  16. Thongekaew J, Boonchird C. Molecular cloning and functional expression of a novel extracellular lipase from the thermotolerant yeast Candida thermophila. FEMS Yeast Res 7: 232-243 (2007)

    Article  Google Scholar 

  17. Yamamoto H, Shima T, Yamaguchi M, Mochizuki Y, Hoshida H, Kakuta S, Kondo-Kakuta C, Noda NN, Inaqaki F, Itoh T, Akada R, Ohsumi Y. The thermotolerant yeast Kluyveromyces marxianus is a useful organism for structural and biochemical studies of autophagy. J. Biol. Chem. 115: 6833-6842 (2015)

    Google Scholar 

  18. Spencer JFT, Ragout de Spencer AL, Laluce C. Non-conventional yeasts. Appl. Micobiol. Biotechnol. 58: 147-156 (2002)

    Article  CAS  Google Scholar 

  19. Isono N, Hayakawa H, Usami A, Mishima T, Hisamatsu M. A comparative study of ethanol production by Issatchenkia orientalis under stress conditions. J. Biosci. Bioeng. 113: 76-78 (2012)

    Article  CAS  Google Scholar 

  20. Choi DH, Park EH, Kim MD. Characterization of starch-utilizing yeast Saccharomycopsis fibuligera isolated from Nuruk. Korean J. Microbiol. Biotechnol. 42: 407-412 (2014)

    Article  Google Scholar 

  21. Yun HJ, Lee YJ, Yeo SH, Choi HS, Park HY, Park HD, Baek SY. The isolation and culture characterization of a lipolytic enzyme producing strain from meju. Korean J. Microbiol. Biotechnol. 2: 98-103 (2012)

    Article  Google Scholar 

  22. Hillis DM, Dixon MT. Ribosomal DNA: molecular evoluiton and phylogenetic inference. Quart. Rev. Biol. 66: 411-453 (1991)

    Article  CAS  Google Scholar 

  23. Ducan DB. Multiple range and multiple F tests. Biometrics 11: 1-42 (1955)

    Article  Google Scholar 

  24. Dhaliwal SS, Oberoi HS, Sandhu SK, Nanda D, Kumar D, Uppal SK. Enhanced ethanol production from sugarcane juice by galactose adaptation of a newly isolated thermotolerant strain of Pichia kudriavzevii. Bioresour. Technol. 102: 5968-5975 (2011)

    Article  CAS  Google Scholar 

  25. Kaewkrajay C, Dethoup T, Limtong S. Ethanol production from cassava using a newly isolated thermotolerant yeast strain. Sci. Asia 40: 268-277 (2014)

    Article  Google Scholar 

  26. Arora R, Behera S, Sharma NK, Kumar S. A new search for thermotolerant yeasts, its characterization and optimization using response surface methodology for ethanol production. Front Microbiol. 6: 889 (2015)

    Google Scholar 

  27. Choudhary J, Singh S, Nain L. Thermotolerant fermenting yeasts for simultaneous saccharification fermentation of lignocellulosic biomass. Electro. J. Biotecnol. 21: 82-92 (2016)

    Article  CAS  Google Scholar 

  28. Kurylenko OO, Ruchala J, Hryniv OB, Abbas CA, Dmytruk KV, Sibirny AA. Metabolic engineering and classical selection of the methylotrophic thermotolerant yeast Hansenula polymorpha for improvement of high-temperature xylose alcoholic fermentation. Microb. Cell Fact. 13: 122 (2014)

    Article  Google Scholar 

  29. Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M. Microbial production of xylitol from D-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresour. Technol. 102: 3304-3308 (2011)

    Article  CAS  Google Scholar 

  30. Toivari M, Vehkomaki ML, Nygard Y, Penttila M, Ruohonen L, Wiebe MG. Low pH D-xylonate production with Pichia kudriavzevii. Bioresour. Technol. 133: 555-562 (2013)

    Article  CAS  Google Scholar 

  31. Koutinas M, Patsalou S, Stavrinou S, Vyrides I. High termperature alcoholic fermentation of orange peel by the newly isolated thermotolerant Pichia kudriavzevii KVMP10. Lett. Appl. Microbiol. 62: 75-83 (2015)

    Article  Google Scholar 

  32. Yuangsaard N, Yongmanitchai W, Yamada M, Limtong S. Selection and characterization of a newly isolated thermotolerant Pichia kudriavzevii strain for ethanol production at high temperature from cassava starch hydrolysate. Anton. Van Leeuw. 103: 577-588 (2013)

    Article  CAS  Google Scholar 

  33. Sirisan V, Pattarajinda V, Vichitphan K, Leesing R. Isolation, identification and growth determination of lactic acid-utilizing yeasts from the ruminal fluid of dairy cattle. Lett. Appl. Microbiol. 57: 102-107 (2013)

    Article  CAS  Google Scholar 

  34. Ahn JH, Jang YS, Lee SY. Production of succinic acid by metabolically engineered microorganisms. Curr. Opin. Biotechnol. 42: 54-66 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Human Resource Training Program for Regional Innovation and Creativity through the Ministry of Education and National Research Foundation of Korea (NRF-2014H1C1A1073145).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myoung-Dong Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, DH., Park, EH. & Kim, MD. Isolation of thermotolerant yeast Pichia kudriavzevii from nuruk . Food Sci Biotechnol 26, 1357–1362 (2017). https://doi.org/10.1007/s10068-017-0155-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0155-6

Keywords

Navigation