Skip to main content
Log in

Oligochitosan as a potential anti-acne vulgaris agent: combined antibacterial effects against Propionibacterium acnes

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

To develop an antibacterial treatment for acne vulgaris using natural substance with few side effects, we investigated the antibacterial activities of oligochitosan against acne-related bacteria, particularly Propionibacterium acnes. Oligochitosan showed potent antibacterial effect on P. acnes. Especially, 10 kDa oligochitosan presented the highest antimicrobial effect with minimum inhibitory concentration values of 32–64 μg/mL on P. acnes. In addition, oligochitosan clearly reversed the antibacterial effect of tetracycline and erythromycin on P. acnes in the combination mode. The combination of tetracycline- or erythromycine-10 kDa oligochitosan resulted in a median ΣFIC range of 0.02–0.56, suggesting that the antibiotics–oligochitosan combination resulted in an antibacterial synergy against P. acnes. Thus, the results obtained in this research strongly supported that erythromycin and tetracycline will restore the antibacterial activity against P. acnes in the combination mode with 10 kDa oligochitosan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Uhlenhake E, Yentzer BA, Feldman SR. Acne vulgaris and depression: a retrospective examination. J. Cosmet. Dermatol. 9: 59–63 (2010)

    Article  Google Scholar 

  2. Farrar MD, Ingham, E. Acne: inflammation. Clin. Dermatol. 22: 380–384 (2004)

    Article  Google Scholar 

  3. Ash C, Harrison A, Drew S, Whittall R. A randomized controlled study for the treatment of acne vulgaris using high-intensity 414 nm solid state diode arrays. J. Cosmet. Laser Ther. 17: 170–176 (2015)

    Article  Google Scholar 

  4. Lee JH, Eom SH, Lee EH, Jung YJ, Kim HJ, Jo MR, Son KT, Lee HJ, Kim JH, Lee MS, Kim YM. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 29: 47–55 (2014)

    Article  Google Scholar 

  5. Liu PF, Nakatsuji T, Zhu W, Gallo RL, Huang CM. Passive immunoprotection targeting a secreted CAMP factor of Propionibacterium acnes as a novel immunotherapeutic for acne vulgaris. Vaccine 29: 3230–3238 (2011)

    Article  CAS  Google Scholar 

  6. Han S, Lee K, Yeo J, Baek H, Park K. Antibacterial and anti-inflammatory effects of honeybee (Apis mellifera) venom against acne-inducing bacteria. J. Med. Plants Res. 4: 459–464 (2010)

    CAS  Google Scholar 

  7. Kim JY, Oh TH, Kim BJ, Kim SS, Lee NH, Hyun CG. Chemical composition and anti-inflammatory effects of essential oil from Farfugium japonicum flower. J. Oleo Sci. 57: 623–628 (2008)

    Article  CAS  Google Scholar 

  8. Lee SH, Ryu BM, Je JY, Kim SK. Diethylaminoethyl chitosan induces apoptosis in HeLa cells via activation caspase-3 and p53 expression. Carbohydr. Polym. 84: 571–578 (2011)

    Article  CAS  Google Scholar 

  9. Kim JH, Je JY, Kim YM. Anti-inflammatory effects of chitosan-phytochemical conjugates against Propionibacterium acnes-induced inflammation. Korean J. Fish. Aquat. Sci. 49: 589–593 (2016)

    CAS  Google Scholar 

  10. Cho YS, Kim SK, Ahn CB, Je JY. Preparation, characterization, and antioxidant properties of gallic acid-grafted-chitosans. Carbohydr. Polym. 83: 1617–1622 (2011)

    Article  CAS  Google Scholar 

  11. Seo S, King JM, Prinyawiwatkul W. Simultaneous depolymerization and decolorization of chitosan by ozone treatment. J. Food Sci. 72: 522–526 (2007)

    Article  Google Scholar 

  12. Kim SK, Rajapakse N. Enzymatic production and biological activities of chitosan oligosaccharides (COS): a review. Carbohydr. Polym. 62: 357–368 (2005)

    Article  CAS  Google Scholar 

  13. Lodhi G, Kim YS, Hwang JW, Kim SK, Jeon YJ, Je JY, Ahn CB, Moon SH, Jeon BT, Park PJ. Chitooligosaccharide and its derivatives: preparation and biological applications. BioMed Res. Int. Article ID 654913 (2014)

  14. Xia WS. Physiological activities of chitosan and its application in functional foods. J. Chinese Inst. Food Sci. Technol. 3: 77–81 (2003)

    Google Scholar 

  15. Bravo-Osuna I, Millotti G, Vauthier C, Ponchel G. In vitro evaluation of calcium binding capacity of chitosan and thiolated chitosan poly (isobutyl cyanoacrylate) core-shell nanoparticles. Int. J. Pharm. 338: 284–290 (2007)

    Article  CAS  Google Scholar 

  16. Xia W, Liu P, Zhang J, Chen J. Biological activities of chitosan and chitooligosaccharides. Food Hydrocolloid. 25: 170–179 (2011)

    Article  CAS  Google Scholar 

  17. Park PJ, Je JY, Jung WK, Byun HG, Kim SK. Free radical scavenging activities of chitooligosaccharides hydrolyzed from chitosan with high degree of deacetylation on 1,1-diphenyl-2-picrylhydrazyl radical., J. Chitin Chitosan 9: 108–113 (2004)

  18. Jung WK, Moon SH, Kim SK. Effect of chitooligosaccharides on calcium bioavailability and bone strength in ovariectomized rats. Life Sci. 78: 970–976 (2006)

    Article  CAS  Google Scholar 

  19. Grierson DS, Afolayan AJ. Antibacterial activity of some indigenous plants used for the treatment of wounds in the Eastern Cape, South Africa. J. Ethnopharmacol. 66: 103–106 (1999)

    Article  CAS  Google Scholar 

  20. Clinical and Laboratory Standards Institute (CLSI). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: Approved standard, 8th ed. CLSI document M07-A8. CLSI, Wayne, PA, pp 68 (2006)

  21. Amyes S, Miles RS, Thomson CJ, Tillotson G. Antimicrobial Chemotherapy: Pocketbook. CRC Press, Florida, pp 25 (1996)

  22. Jenkins SG, Schuetz AN. Current concepts in laboratory testing to guide antimicrobial therapy. Mayo Clin. Proc. 87: 290–308 (2012)

    Article  CAS  Google Scholar 

  23. Odds FC. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother. 52: 1 (2003)

    Article  CAS  Google Scholar 

  24. Hsieh MH, Yu CM, Yu VL, Chow JW. Synergy assessed by checkerboard. A critical analysis. Diagn. Microbiol. Infect. Dis. 16: 343–349 (1993)

    Article  CAS  Google Scholar 

  25. Kim YH, Kim JH, Kim DH, Kim SH, Kim HR, Kim YM. Synergistic Antimicrobial Effect of Sargassum serratifolium (C. Agardh) C. Agardh extract against human skin pathogens. Korea J. Food Sci. Technol. 48: 241–246 (2016)

    Google Scholar 

  26. Rabea EI, Badawy ME, Stevens CV, Smagghe G, Steurbaut W. Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules 4: 1457–1465 (2003)

    Article  CAS  Google Scholar 

  27. Champer J, Patel J, Fernando N, Salehi E, Wong V, Kim J. Chitosan against cutaneous pathogens. AMB Express, 3: 37 (2013)

    Google Scholar 

  28. Shon DH. Chitosan oligosaccharides for functional foods and microbial enrichment of chitosan oligosaccharides in soy-paste. In: Proceedings of the International workshop on Bioactive Natural Products. The Committee on Science and Technology in Developing Countries (COSTED) and the Science Council of Japan, Tokyo, Japan: 56–66. (2001)

  29. Tharanathan RN, Kittur FS. Chitin—The undisputed biomolecule of great potential. Crit. Rev. Food Sci. Nutr. 43: 61–87 (2003)

    Article  CAS  Google Scholar 

  30. Park SC, Nah JW, Park Y. pH-dependent mode of antibacterial actions of low molecular weight water-soluble chitosan (LMWSC) against various pathogens. Macromol. Res. 19: 853–860 (2011)

    Article  CAS  Google Scholar 

  31. Goy RC, Britto DD, Assis OB. A review of the antimicrobial activity of chitosan. Polimeros 19: 241–247 (2009)

    CAS  Google Scholar 

  32. Eaton P, Fernandes JC, Pereira E, Pintado ME, Malcata FX. Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy 108: 1128–1134 (2008)

    Article  CAS  Google Scholar 

  33. Soussy CJ, Cluzel R, Courvalin P. Definition and Determination of in vitro antibiotic susceptibility breakpoints for bacteria in France. Eur. J. Clin. Microbiol. Infect. Dis. 13: 238–246 (1994)

    Article  CAS  Google Scholar 

  34. Eom SH, Park JH, Yu DU, Choi JI, Choi JD, Lee MS, Kim YM. Antimicrobial activity of brown alga Eisenia bicyclis against methicillin-resistant Staphylococcus aureus. Fish. Aquat. Sci. 14: 251–256 (2011)

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Marine Biotechnology Program (20150220) funded by the Ministry of Oceans and Fisheries, Republic of Korea. Moreover, this study was supported by the special fund of Pukyong National University, donated by the SKS Trading Co. in Lynnwood, WA, USA in memory of the late Mr. Young Hwan Kang for his inspiration and deep concern for fisheries science. The pathogen for this study was provided by the Gyeongsang National University Hospital Branch of National Culture Collection for Pathogens (GNUH-NCCP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young-Mog Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SH., Eom, SH., Yu, D. et al. Oligochitosan as a potential anti-acne vulgaris agent: combined antibacterial effects against Propionibacterium acnes . Food Sci Biotechnol 26, 1029–1036 (2017). https://doi.org/10.1007/s10068-017-0118-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0118-y

Keywords

Navigation