Antifungal activity of isothiocyanates extracted from horseradish (Armoracia rusticana) root against pathogenic dermal fungi

Abstract

To develop natural antifungal agents against pathogenic dermal fungi, the antifungal activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root was investigated. A paper disk diffusion assay showed that ITCs inhibited growth of the four pathogenic dermal fungi (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, and Epidermophyton floccosum) at 5000 μg/mL, as well as perfectly inhibited the growth of the fungi at 10,000 μg/mL in a concentration-dependent manner. The minimum inhibitory concentrations of ITCs against T. rubrum, T. mentagrophytes, M. canis, and E. floccosum were 200, 200, 100, and 100 μg/mL, respectively. The minimum fungicidal concentrations of ITCs against the four pathogenic dermal fungi were 200 μg/mL. These results strongly suggested that ITCs extracted from horseradish root can be a candidate of natural antifungal agents against pathogenic dermal fungi, even though further study is needed to investigate how to use ITCs in clinical therapy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. 1.

    Won CH, Lee JY, Li KS, Choi MR, Kim BJ, An JS, Kim KH, Cho SY, Moon SE, Kim JA, Eun HC. The long term efficacy and relapse rate of itraconazole pulse therapy versus terbinafine continuous therapy for toenail onychomycosis. Kor. J. Med. Mycol. 12: 139–147 (2007)

    Google Scholar 

  2. 2.

    Park SH, Shin YM, Moon SK, Shin DH, Choi JS, Kim KH, Bang YJ. A clinical and mycological study of tinea pedis. Kor. J. Med. Mycol. 11: 123–131 (2006)

    Google Scholar 

  3. 3.

    Pfaller MA, Sutton DA. Review of in vitro activity of sertaconazole nitrate in the treatment if superfical fungal infections. Diagnostic Microbio. Infect. Dis. 56: 147–152 (2006)

    CAS  Article  Google Scholar 

  4. 4.

    Choi CP, Lee MH. Six cases of tinea capitis in asults. Kor. J. Med. Mycol. 11: 230–233 (2006)

    Google Scholar 

  5. 5.

    Kim HJ, Lee WJ, Jun JB, Kim TH, Suh SB. A clinical, mycological and epidemiological study on tinea barbae during the last 24-year-period (1981-2004). Kor. J. Med. Mycol. 11: 6–70 (2006)

    Google Scholar 

  6. 6.

    Kim SM, Lee YW, Ahn KJ. A clinical and mycological study of tinea capitis. Kor. J. Med. Mycol. 11: 184–190 (2006)

    Google Scholar 

  7. 7.

    Aditya K. Gupta AK, Linh Q. Tu. Dermatophytes: diagnosis and treatment. J. Am. Acad. Dermatol. 54: 1050–1055 (2006)

    Article  Google Scholar 

  8. 8.

    Tosti A, Piraccini MB, Stinchi C, Colombo MD. Relapses of onychomycosis after successful treatment with systemic antifungals: a three-year follow-up. Dermatol. 197: 162–166 (1998)

    CAS  Article  Google Scholar 

  9. 9.

    Hay RJ. The future of onychomycosis therapy may involve a combination of approaches. Br. J. Dermatol. 145: 3–8 (2001)

    Article  Google Scholar 

  10. 10.

    Mukherjee PK, Leidich SD, Isham N. Clinical Trichophyton rubrum strain exhibiting primary resistance to terbinafine. Antimicrob. Agents Chemo. 47: 82–86 (2003)

    CAS  Article  Google Scholar 

  11. 11.

    Shin S, Lim S. Antifungal effects of herbal essential oils alone and in combination with ketoconazole against Trichophyton spp. J. App. Microbiol. 97: 1289–1296 (2004)

    CAS  Article  Google Scholar 

  12. 12.

    Fenwick GR, Heaney RK, Mullin WJ, VanEtten CH. Glucosinolates and their breakdown products in food and food plants. CRC Cr. Rev. Food Sci. 18: 123–201 (1982)

    Article  Google Scholar 

  13. 13.

    Chadwick CI, Lumpkin TA, Elberson LR. The botany, uses and production of Wasabia japonica (Miq.) (Cruciferae) Matsum. Econ. Bot. 47: 113–135 (1993)

    Article  Google Scholar 

  14. 14.

    Sikkema J, de Bont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269: 8022–8028 (1994)

    CAS  Google Scholar 

  15. 15.

    Isshiki K, Tokuoka K, Mori R, Chiba S. Preliminary examination of allyl isothiocyanate vapor for food preservation. Biosci. Biotech. Biochem, 56: 1476–1477 (1992)

    CAS  Article  Google Scholar 

  16. 16.

    Kim HY, Gornsawun G, Shin IS. Antibacterial activities of Isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root in liquid and vapor phases against 5 dominant bacteria Isolated from low-salt Jeotgal, a Korean salted and fermented seafood. Food Sci. Biotechnol. 24: 1405–1412 (2015)

    CAS  Article  Google Scholar 

  17. 17.

    Nielsen PV, Rios R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol. 60: 219–229 (2000)

    CAS  Article  Google Scholar 

  18. 18.

    Kawakishi S, Kaneko T. Interaction of proteins with allyl isothiocyanate. J. Agr. Food Chem. 35: 85–88 (1987)

    CAS  Article  Google Scholar 

  19. 19.

    Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 20: 1073–1079 (2009)

    CAS  Article  Google Scholar 

  20. 20.

    Choi JK, Gornsawun G, Shin IS. Effect of a polypropylene (PP) patch containing isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root on the shelf-life of low-salt Myeong-ran Jeotgal. Food Sci. Biotechnol. 24: 1–12 (2015)

    Article  Google Scholar 

  21. 21.

    Maria ESB, Daniel AS, JÚnia SH. In vitro methods for antifungal susceptibility testing of Trichophyton spp. Mycol. Res. 110: 1355–1360 (2006)

    Article  Google Scholar 

  22. 22.

    NCCLS. Reference method for broth dilution antifungal susceptibility testing of filamentous fungi: Approved standard. NCCLS document M38-A. National Committee for Clinical Laboratory Standards. Wayne, PA, USA (2002)

  23. 23.

    Bamba H, Kondo Y, Wong RM, Sekine S, Matsuzaki F. Evaluation of an assay method of the susceptibility of antimicrobial agents using a 96-well flat-bottom microplate and a microplate reader. Am. J. Gastroenterol. 92: 659–662 (1997)

    CAS  Google Scholar 

  24. 24.

    Abad MJ, Ansuategui M, Bermejo P. Active antifungal substances from natural sources. ARKIVOC. VII: 116–145 (2007)

    Google Scholar 

  25. 25.

    Wikipedia. Horseradish. Available from: http://en.wikipedia.org/wiki/ Horseradish. Accessed Dec. 12, 2016

  26. 26.

    Depree JA, Howard TM, Savage GP. Flavour and pharmaceutical properties of the volatile sulphur compounds of wasabi (Wasabia japonica). Food Res, Inter. 31: 329–337 (1999)

    Article  Google Scholar 

  27. 27.

    Tunc S, Chollet E, Chalier P. Combined effect of volatile antimicrobial agents on the growth of Penicillium notatum. Inter. J. Food Microbiol. 113: 263–270 (2007)

    CAS  Article  Google Scholar 

  28. 28.

    Troncoso R, Espinoza C, Sánchez-Estrada A. Analysis of the isothiocyanates present in cabbage leaves extract and their potential application to control Alternaria rot in bell peppers. Food Res. Inter. 38: 701–708 (2005)

    CAS  Article  Google Scholar 

  29. 29.

    Hammer KA, Carson CF, Riley TV. In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. J. Antimicro. Chemo. 50: 195–199 (2002)

    CAS  Article  Google Scholar 

  30. 30.

    Pinto E, Salgueiro LR, Cavaleiro C. In vitro susceptibility of some species of yeasts and filamentous fungi to essential oils of Salvia officinalis. Indus. Crops Products. 26: 125–141 (2007)

    Article  Google Scholar 

  31. 31.

    Chuang PH, Lee CW, Chou JY. Anti-fungal activity of crude extracts and essential oil of Moringa oleifera Lam. Bioresource. Technol. 98: 232–236 (2007)

    CAS  Article  Google Scholar 

  32. 32.

    Kim HY, Sarinnart P, Shin IS. Antibacterial activities of isothiocyanates extracted from horseradish (Armoracia rusticana) root against antibiotic-resistant bacteria. Food Sci. Biotechnol. 24: 1029–1034 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    Kassie F, KnasmÜller S. Genotoxic effects of allyl isothiocyanate (AITC) and phenethyl isothiocyanate (PEITC). Chemico-Biological Interact. 127: 163–180 (2000)

    CAS  Article  Google Scholar 

  34. 34.

    Zhang Y, Li J, Tang L. Cancer-preventive isothiocyanates: dichotomous modulators of oxidative stress. Free Radical Biol. Med. 38: 70–77 (2005)

    Article  Google Scholar 

  35. 35.

    Sellam A, Dongo A, Guillemette T. Transcriptional responses to exposure to the brassicaceous defence metabolites camalexin and allyl-isothiocyanate in the necrotrophic fungus Alternaria brassicicola. Molecul. Plant Pathol. 8: 195–208 (2007)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Il-Shik Shin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, KD., Kim, HY. & Shin, IS. Antifungal activity of isothiocyanates extracted from horseradish (Armoracia rusticana) root against pathogenic dermal fungi. Food Sci Biotechnol 26, 847–852 (2017). https://doi.org/10.1007/s10068-017-0104-4

Download citation

Keywords

  • Antifungal activity
  • Isothiocyanates
  • Dermatophytes
  • MIC
  • MFC