Skip to main content
Log in

Green lipped mussel oil complex suppresses lipopolysaccharide stimulated inflammation via regulating nuclear factor-κB and mitogen activated protein kinases signaling in RAW264.7 murine macrophages

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript


Here we investigated the effect of green lipped mussel oil complex (GLMOC) on inflammation and underlying mechanism in lipopolysaccharide stimulated RAW264.7 murine macrophage cells. GLMOC containing green lipped mussel oil (GLMO), olive oil, and vitamin E (10:20:1) can induce significant suppression of iNOS, leading to reduced nitric oxide synthesis, and cyclooxygenase-2, leading to reduced prostaglandin E2 synthesis. In addition, it down-regulated the release of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-6, and IL-1β. Similar to upstream signaling mediators, GLMCO inhibited the degradation of inhibitory κB, nuclear translocation of NF-κB, and phosphorylation of mitogen activated protein kinases (MAPKs) in a dose-dependent manner. Among the components of GLMOC, GLMO was responsible for anti-inflammatory efficacy. Taken together, GLMOC induces anti-inflammatory activity via regulating NF-κB and MAPK signaling in lipopolysaccharide-induced RAW264.7 cells, providing underlying mechanisms that elucidate the anti-inflammatory efficacy of GLMOC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. Doggrell SA. Lyprinol-is it a useful anti-inflammatory agent? Evid. Based Complement. Alternat. Med. 2011: 307121 (2011)

    Article  Google Scholar 

  2. Cho SH, Jung YB, Seong SC, Park HB, Byun KY, Lee DC, Song EK, Son JH. Clinical efficacy and safety of Lyprinol, a patented extract from New Zealand green-lipped mussel (Perna canaliculus) in patients with osteoarthritis of the hip and knee: a multicenter 2-month clinical trial. Eur. Ann. Allergy. Clin. Immunol. 35: 212–216 (2003)

    Google Scholar 

  3. Gruenwald J, Graubaum HJ, Hansen K, Grube B. Efficacy and tolerability of a combination of Lyprinol and high concentrations of EPA and DHA in inflammatory rheumatoid disorders. Adv. Ther. 21: 197–201 (2004)

    Article  CAS  Google Scholar 

  4. Hielm-Bjorkman A, Tulamo RM, Salonen H, Raekallio M. Evaluating complementary therapies for canine osteoarthritis part I: Green-lipped mussel (Perna canaliculus). Evid. Based Complement. Alternat. Med. 6: 365–373 (2009)

    Article  Google Scholar 

  5. Lee CH, Lum JH, Ng CK, McKay J, Butt YK, Wong MS, Lo SC. Pain controlling and cytokine-regulating effects of lyprinol, a lipid extract of Perna canaliculus, in a rat adjuvant-induced arthritis model. Evid. Based Complement. Alternat. Med. 6: 239–245 (2009)

    Article  Google Scholar 

  6. Halpern GM. Anti-inflammatory effects of a stabilized lipid extract of Perna canaliculus (Lyprinol). Allerg. Immunol. (Paris) 32: 272–278 (2000)

    CAS  Google Scholar 

  7. McPhee S, Hodges LD, Wright PF, Wynne PM, Kalafatis N, Harney DW, Macrides TA. Anti-cyclooxygenase effects of lipid extracts from the New Zealand green-lipped mussel, Perna canaliculus. Comp. Biochem. Physiol. B Biochem. Mol. Biol. 146: 346–356 (2007)

    Article  CAS  Google Scholar 

  8. Tenikoff D, Murphy KJ, Le M, Howe PR, Howarth GS. Lyprinol (stabilised lipid extract of New Zealand green-lipped mussel): a potential preventative treatment modality for inflammatory bowel disease. J. Gastroenterol. 40: 361–365 (2005)

    Article  CAS  Google Scholar 

  9. Emelyanov A, Fedoseev G, Krasnoschekova O, Abulimity A, Trendeleva T, Barnes PJ. Treatment of asthma with lipid extract of New Zealand green-lipped mussel: a randomised clinical trial. Eur. Respir. J. 20: 596–600 (2002)

    Article  CAS  Google Scholar 

  10. Mickleborough TD, Vaughn CL, Shei RJ, Davis EM, Wilhite DP. Marine lipid fraction PCSO-524 (lyprinol/omega XL) of the New Zealand green lipped mussel attenuates hyperpnea-induced bronchoconstriction in asthma. Respir. Med. 107: 1152–1163 (2013)

    Article  Google Scholar 

  11. Dugas B. Lyprinol inhibits LTB4 production by human monocytes. Allerg. Immunol. (Paris) 32: 284–289 (2000)

    CAS  Google Scholar 

  12. Medzhitov R. Origin and physiological roles of inflammation. Nature 454: 428–435 (2008)

    Article  CAS  Google Scholar 

  13. Laveti D, Kumar M, Hemalatha R, Sistla R, Naidu VG, Talla V, Verma V, Kaur N, Nagpal R. Anti-inflammatory treatments for chronic diseases: a review. Inflamm. Allergy Drug. Targets 12: 349–361 (2013)

    Article  CAS  Google Scholar 

  14. Wang D, DuBois RN. Immunosuppression associated with chronic inflammation in the tumor microenvironment. Carcinogenesis 36: 1085–1093 (2015)

    Article  CAS  Google Scholar 

  15. Akira S, Takeda K. Toll-like receptor signalling. Nat. Rev. Immunol. 4: 499–511 (2004)

    Article  CAS  Google Scholar 

  16. Ghosh S, Hayden MS. New regulators of NF-kappaB in inflammation. Nat. Rev. Immunol. 8: 837–848 (2008)

    Article  CAS  Google Scholar 

  17. Hawiger J. Innate immunity and inflammation: a transcriptional paradigm. Immunol. Res. 23: 99–109 (2001)

    Article  CAS  Google Scholar 

  18. Murakami A, Ohigashi H. Targeting NOX, INOS and COX-2 in inflammatory cells: chemoprevention using food phytochemicals. Int. J. Cancer 121: 2357–2363 (2007)

    Article  CAS  Google Scholar 

  19. Grienke U, Silke J, Tasdemir D. Bioactive compounds from marine mussels and their effects on human health. Food Chem. 142: 48–60 (2014)

    Article  CAS  Google Scholar 

  20. Shaw CA, Taylor EL, Megson IL, Rossi AG. Nitric oxide and the resolution of inflammation: implications for atherosclerosis. Mem. Inst. Oswaldo Cruz. 100 Suppl. 1: 67–71 (2005)

    Article  CAS  Google Scholar 

  21. Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 75: 639–653 (2004)

    Article  CAS  Google Scholar 

  22. Echizen K, Hirose O, Maeda Y, Oshima M. Inflammation in gastric cancer: Interplay of the COX-2/prostaglandin E2 and toll-like receptor/MyD88 pathways. Cancer Sci. 107: 391–397 (2016)

    Article  CAS  Google Scholar 

  23. Esteve JB, Launay-Vacher V, Brocheriou I, Grimaldi A, Izzedine H. COX-2 inhibitors and acute interstitial nephritis: case report and review of the literature. Clin. Nephrol. 63: 385–389 (2005)

    Article  CAS  Google Scholar 

  24. Risbud MV, Shapiro IM. Role of cytokines in intervertebral disc degeneration: pain and disc content. Nat. Rev. Rheumatol. 10: 44–56 (2014)

    Article  CAS  Google Scholar 

  25. Lawson BR, Belkowski SM, Whitesides JF, Davis P, Lawson JW. Immunomodulation of murine collagen-induced arthritis by N,N-dimethylglycine and a preparation of Perna canaliculus. BMC Complement. Altern. Med. 7: 20 (2007)

    Article  Google Scholar 

  26. Mitchell S, Vargas J, Hoffmann A. Signaling via the NFkappaB system. Wiley Interdiscip. Rev. Syst. Biol. Med. 8: 227–241 (2016)

    Article  CAS  Google Scholar 

  27. Dumitru CD, Ceci JD, Tsatsanis C, Kontoyiannis D, Stamatakis K, Lin JH, Patriotis C, Jenkins NA, Copeland NG, Kollias G, Tsichlis PN. TNF-alpha induction by LPS is regulated posttranscriptionally via a Tpl2/ERK-dependent pathway. Cell 103: 1071–1083 (2000)

    Article  CAS  Google Scholar 

  28. Guma M, Stepniak D, Shaked H, Spehlmann ME, Shenouda S, Cheroutre H, Vicente-Suarez I, Eckmann L, Kagnoff MF, Karin M. Constitutive intestinal NF-kappaB does not trigger destructive inflammation unless accompanied by MAPK activation. J. Exp. Med. 208: 1889–1900 (2011)

    Article  CAS  Google Scholar 

  29. Murphy KJ, Mooney BD, Mann NJ, Nichols PD, Sinclair AJ. Lipid, FA, and sterol composition of New Zealand green lipped mussel (Perna canaliculus) and Tasmanian blue mussel (Mytilus edulis). Lipids 37: 587–595 (2002)

    Article  CAS  Google Scholar 

  30. Whitehouse MW, Macrides TA, Kalafatis N, Betts WH, Haynes DR, Broadbent J. Anti-inflammatory activity of a lipid fraction (lyprinol) from the NZ green-lipped mussel. Inflammopharmacology 5: 237–246 (1997)

    Article  CAS  Google Scholar 

  31. Wakimoto T, Kondo H, Nii H, Kimura K, Egami Y, Oka Y, Yoshida M, Kida E, Ye Y, Akahoshi S, Asakawa T, Matsumura K, Ishida H, Nukaya H, Tsuji K, Kan T, Abe I. Furan fatty acid as an anti-inflammatory component from the green-lipped mussel Perna canaliculus. Proc. Natl. Acad. Sci. USA 108: 17533–17537 (2011)

    Article  CAS  Google Scholar 

Download references


This research was supported by the Chung-Ang University research grant in 2016.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Hong Jin Lee.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Bao, C., Cho, S.H. et al. Green lipped mussel oil complex suppresses lipopolysaccharide stimulated inflammation via regulating nuclear factor-κB and mitogen activated protein kinases signaling in RAW264.7 murine macrophages. Food Sci Biotechnol 26, 815–822 (2017).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: