Mathematical modeling of uvaia byproduct drying and evaluation of quality parameters

Abstract

Uvaia (Eugenia pyriformis) frozen pulp processing generates a solid byproduct that can potentially contain important components of human nutrition. In this study, the drying of uvaia byproduct was studied. Two different drying treatments were tested: drying of wet waste and drying of waste with prior removal of water by centrifugation. Three drying temperatures were used: 40, 60, and 80 °C. Eight models were applied to fit the drying curves: Page, Lewis, Modified Page, Logarithmic, Midilli, Wang and Singh, Henderson and Pabis, and Weibull. Midilli presented an excellent fit to the curves. The effective moisture diffusivity of the uvaia byproduct ranged between 8.52 × 10−10 and 3.22 × 10−9 m2/s. The activation energy was 25.65 and 24.97 kJ/mol for non-centrifuged and centrifuged assays, respectively. The dried byproducts had a reduction of 3–21% of the total phenolic content against the control. The assay performed at 40 °C with centrifugation presented the lowest total color difference value.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Djilas S, Canadanovic-Brunet J, Cetkovic G. By-products of fruits processing as a source of phytochemicals. Chem. Ind. Chem. Eng. Q. 15: 191–202 (2009)

    CAS  Article  Google Scholar 

  2. 2.

    Lousada Junior JE, Maria J, Neuman J, Neiva M. Caracterização físico-química de subprodutos obtidos do processamento de frutas tropicais visando seu aproveitamento na alimentação animal. Rev. Ciên. Agron. 37: 70–76 (2006)

    Google Scholar 

  3. 3.

    Sousa M, Vieira L, Silva M da, Lima A de. Caracterização nutricional e compostos antioxidantes em resíduos de polpas de frutas tropicais. Ciênc. Agrotec. 35: 554–59 (2011)

    CAS  Article  Google Scholar 

  4. 4.

    Górnaś P, Rudzińska M. Seeds recovered from industry by-products of nine fruit species with a high potential utility as a source of unconventional oil for biodiesel and cosmetic and pharmaceutical sectors. Ind. Crops Prod. 83: 329–338 (2016)

    Article  Google Scholar 

  5. 5.

    O’Shea N, Rößle C, Arendt E, Gallagher E. Modelling the effects of orange pomace using response surface design for gluten-free bread baking. Food Chem. 166: 223–230 (2015)

    Article  Google Scholar 

  6. 6.

    Dias MV, Figueiredo LP, Valente WA, Ferrua FQ, Pereira PAP, Pereira AGT, Borges SV, Clemente PR. Estudo de variáveis de processamento para produção de doce em massa da casca do maracujá (passiflora edulis f. flavicarpa). Ciência e Tecnol. Aliment. 31: 65–71 (2011)

    Article  Google Scholar 

  7. 7.

    Ktenioudaki A, O’Shea N, Gallagher E. Rheological properties of wheat dough supplemented with functional by-products of food processing: brewer’s spent grain and apple pomace. J. Food Eng. 116: 362–368 (2013)

    Article  Google Scholar 

  8. 8.

    Ferreira MSL, Santos MCP, Moro TM, Basto GJ, Andrade RMS, Gonçalves ÉCB. Formulation and characterization of functional foods based on fruit and vegetable residue flour. J. Food Sci. Technol. 52: 822–830 (2015)

    CAS  Article  Google Scholar 

  9. 9.

    Madamba PS, Driscollb RH, Buckleb KA. The thin-layer drying characteristics of garlic slices. J. Food Eng. 29: 75–97 (1996)

    Article  Google Scholar 

  10. 10.

    Doymaz İ, Altıner P. Effect of pretreatment solution on drying and color characteristics of seedless grapes. Food Sci. Biotechnol. 21: 43–49 (2012)

    Article  Google Scholar 

  11. 11.

    Pereira MC, Steffens RS, Jablonski A, Hertz PF, Rios ADO. Characterization and antioxidant potential of Brazilian fruits from the Myrtaceae family. J. Agric. Food Chem. 60: 3061–3067 (2012)

    CAS  Article  Google Scholar 

  12. 12.

    Barreto GPM, Benassi MT, Mercadante AZ. Bioactive compounds from several tropical fruits and correlation by multivariate analysis to free radical scavenger activity. J. Braz. Chem. Soc. 20: 1856–1861 (2009)

    CAS  Article  Google Scholar 

  13. 13.

    Clerici MTPS, Carvalho-Silva LB. Nutritional bioactive compounds and technological aspects of minor fruits grown in Brazil. Food Res. Int. 44: 1658–1670 (2011)

    CAS  Article  Google Scholar 

  14. 14.

    Moura MS. Propriedades funcionais de frutas tropicais brasileiras não tradicionais. Ph.D. Thesis, Universidade Federal Rural do Semi-Árido, Mossoró, RN, Brazil (2008)

  15. 15.

    AOAC. Official Method of Analysis of AOAC Association of Official Analytical Chemists, Gaithersburg, MD, USA (2006)

  16. 16.

    Bligh EG, Dyer WJ. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917 (1959)

    CAS  Article  Google Scholar 

  17. 17.

    Doymaz İ. Experimental study on drying characteristics of pomegranate peels. Food Sci. Biotechnol. 20: 965–970 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    Falade KO, Solademi OJ. Modelling of air drying of fresh and blanched sweet potato slices. Int. J. Food Sci. Technol. 45: 278–288 (2010)

    CAS  Article  Google Scholar 

  19. 19.

    Demiray E, Tulek Y. Drying characteristics of garlic (Allium sativum L.) slices in a convective hot air dryer. Heat Mass Transf. 50: 779–786 (2014)

    CAS  Article  Google Scholar 

  20. 20.

    Wang Z, Sun J, Liao X, Chen F, Zhao G. Mathematical modeling on hot air drying of thin layer apple pomace. Food Res. Int. 40: 39–46 (2007)

    CAS  Article  Google Scholar 

  21. 21.

    Sadi T, Meziane S. Mathematical modelling, moisture diffusion and specific energy consumption of thin layer microwave drying of olive pomace. Int. Food Res. J. 22: 494–501 (2015)

    Google Scholar 

  22. 22.

    Roberts J, Kidd D, Padilla-Zakour O. Drying kinetics of grape seeds. J. Food Eng. 89: 460–465 (2008)

    Article  Google Scholar 

  23. 23.

    Kara C, Doymaz I. Thin layer drying kinetics of by-products from pomegranate juice processing. J. Food Process. Preserv. 39: 480–487 (2015)

    Article  Google Scholar 

  24. 24.

    Crank J. The Mathematics of diffusion. Oxford University Press: London (1975)

  25. 25.

    Vega-gálvez A, Miranda M, Puente L, Lopez L, Rodriguez K, Di K. Effective moisture diffusivity determination and mathematical modelling of the drying curves of the olive-waste cake. Bioresour. Technol. 101: 7265–7270 (2010)

    Article  Google Scholar 

  26. 26.

    Alibas I. Mathematical modeling of microwave dried celery leaves and determination of the effective moisture diffusivities and activation energy. Food Sci. Technol. 34: 394–401 (2014)

    Google Scholar 

  27. 27.

    Gokhale S V., Lele SS. Dehydration of red beet root (Beta vulgaris) by hot air drying: process optimization and mathematical modeling. Food Sci. Biotechnol. 20: 955–964 (2011)

    Article  Google Scholar 

  28. 28.

    Haminiuk CWI, Plata-Oviedo MSV, Guedes AR, Stafussa AP, Bona E, Carpes ST. Chemical, antioxidant and antibacterial study of Brazilian fruits. Int. J. Food Sci. Technol. 46: 1529–1537 (2011)

    CAS  Article  Google Scholar 

  29. 29.

    Hwa C, Lim C, Figiel A, Wojdyło A, Oziembłowski M. Colour, phenolic content and antioxidant capacity of some fruits dehydrated by a combination of different methods. Food Chem. 141: 3889–3896 (2013)

    Article  Google Scholar 

  30. 30.

    De Azevêdo JCS, Fujita A, de Oliveira EL, Genovese MI, Correia RTP. Dried camu-camu (Myrciaria dubia H.B.K. McVaugh) industrial residue: a bioactive-rich amazonian powder with functional attributes. Food Res. Int. 62: 934–940 (2014)

    Article  Google Scholar 

  31. 31.

    Romdhane NG, Bonazzi C, Kechaou N, Mihoubi NB. Effect of air-drying temperature on kinetics of quality attributes of lemon (Citrus limon cv. lunari) peels. Dry. Technol. 33: 1581–1589 (2015)

    Article  Google Scholar 

  32. 32.

    Bezerra CV, Meller da Silva LH, Corrêa DF, Rodrigues AMC. A modeling study for moisture diffusivities and moisture transfer coefficients in drying of passion fruit peel. Int. J. Heat Mass Transf. 85: 750–755 (2015)

    Article  Google Scholar 

  33. 33.

    Zillo RR, Silva PPM, Zanatta S, Carmo LF, Spotto MHF. Qualidade físico-química da fruta in natura e da polpa de uvaia congelada. Rev. Bras. Prod. Agroindusriais. 15: 293–298 (2013)

    Google Scholar 

  34. 34.

    Ramirez MR, Schnorr CE, Feistauer LB, Apel M, Henriques AT, Moreira JCF, Zuanazzi JA. Evaluation of the polyphenolic content, anti-inflammatory and antioxidant activities of total extract from Eugenia pyriformes cambess (uvaia) fruits. J. Food Biochem. 36: 405–412 (2012)

    CAS  Article  Google Scholar 

  35. 35.

    Spoladore SF, Bissaro CA, Vieira TF, Silva MV, Haminiuk CWI, Demczuk B. Modelagem matemática da secagem de casca de maracujá e influência da temperatura na cor, compostos fenólicos e atividade antioxidante. Rev. Bras. Pesqui. em Aliment. 5: 17–25 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The present study was supported by the Cnpq (National Counsel of Technological and Scientific Development), process number 457190/2014-0. Cnpq also supported the first author with a doctorate scholarship and the third author with an undergraduate research scholarship.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Priscilla Efraim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ramos, K.K., Lessio, B.C., Mecê, A.L.B. et al. Mathematical modeling of uvaia byproduct drying and evaluation of quality parameters. Food Sci Biotechnol 26, 643–651 (2017). https://doi.org/10.1007/s10068-017-0078-2

Download citation

Keywords

  • Uvaia
  • Byproduct
  • Brazilian native fruit
  • Solid waste
  • Drying mathematical model