Skip to main content
Log in

Artemisia scoparia attenuates amyloid β accumulation and tau hyperphosphorylation in spontaneously hypertensive rats

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The preventive effects of Artemisia scoparia extract (AS) and AS + garlic extract (ASG) on the risk of Alzheimer’s disease (AD) were evaluated in spontaneously hypertensive rats. Rats were supplemented with diets containing 2% (w/w) of AS or ASG for 6 weeks. The AS group showed lower levels of amyloid β and beta-site amyloid precursor protein cleaving enzyme 1 expressions and higher expression levels of low-density lipoprotein receptor-related protein 1 than did the control group (p < 0.05). In addition, the AS showed remarkably reduced levels of phosphorylated tau proteins and suppressed expression of phosphorylated glycogen synthase kinase 3β at tyrosine 216 (active form) (p < 0.05). The ASG group also suppressed amyloid β accumulation and tau hyperphosphorylation. However, there was no synergistic effect of garlic with AS in lowering the risk of AD. These results indicate that AS could be a potential candidate to ameliorate the risk of AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Alzheimer’s Association. Alzheimer’s disease facts and figures. Alzheimer’s Dement. 10: e47–92 (2014)

    Article  Google Scholar 

  2. Kolarova M, García-Sierra F, Bartos A, Ricny J, Ripova D. Structure and pathology of tau protein in Alzheimer disease. Int. J. Alzheimer’s Dis. 2012: 731526 (2012)

    Google Scholar 

  3. Duka V, Lee JH, Credle J, Wills J, Oaks A, Smolinsky C, Shah K, Mash DC, Masliah E, Sidhu A. Identification of the sites of tau hyperphosphorylation and activation of tau kinases in synucleinopathies and Alzheimer’s diseases. PLoS One 8: e75025 (2013)

    Article  CAS  Google Scholar 

  4. Glodzik L, Rusinek H, Pirrglia E, Mchugh P, Tsui W, Williams S, Cummings M, Rich K, Randall C, Mosconi L, Osoria R, Murray J, Zetterberg H, Blennow K, de Leon M. Blood pressure decrease correlates with tau pathology and memory decline in hypertensive elderly. Neurobiol. Aging 35: 64–71 (2014)

    Article  CAS  Google Scholar 

  5. Warchol-Celinska E, Styczynska M, Prejbisz A, Przybylowska K, Chodakowska-Zebrowska M, Kurjata P, Piotrowski W, Polakowska M, Kabat M, Zdrojewski T, Drygas W, Januszewicz A, Barcikowska M. Hypertension in patients with Alzheimer’s disease—prevalence, characteristics, and impact on clinical outcome. Experience of one neurology center in Poland. J. Am. Soc. Hypertens. 9: 711–724 (2015)

    Article  Google Scholar 

  6. Loef M, Walach H. Fruit, vegetables and prevention of cognitive decline or dementia: a systematic review of cohort studies. J. Nutr. Health Aging 16: 626–630 (2012)

    Article  CAS  Google Scholar 

  7. Hu N, Yu JT, Tan L, Wang YL, Sun L, Tan L. Nutrition and the risk of Alzheimer’s disease. Biomed Res. Int. 2013: 524820 (2013)

    Google Scholar 

  8. Cho JY, Jeong SJ, Lee HL, Park KH, Hwang DY, Park SY, Lee YG, Moon JH, Ham KS. Sesquiterpene lactones and scopoletins from Artemisia scoparia Waldst. & Kit. and their angiotensin I-converting enzyme inhibitory activities. Food Sci. Biotechnol. 25: 1701–1708 (2016)

    Article  CAS  Google Scholar 

  9. Yahagi T, Yakura N, Matsuzaki K, Kitanaka S. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in Raw 264.7 cells. J. Nat. Med. 68: 414–420 (2014)

    Article  CAS  Google Scholar 

  10. Habib M, Waheed L. Evaluation of anti-nociceptive, anti-inflammatory and antipyretic activities of Artemisia scoparia hydromethanolic extract. J. Ethnopharmacol. 145: 18–24 (2013)

    Article  Google Scholar 

  11. Wang ZQ, Zhang XH, Yu Y, Tipton RC, Raskin I, Ribnicky D, Johnson W, Cefalu WT. Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by enhancing hepatic insulin and AMPK signaling independently of FGF21 pathway. Metabolism 62: 1239–1249 (2013)

    Article  CAS  Google Scholar 

  12. Cho JY, Park KH, Hwang DY, Lily J, Park YK, Kim SY, Kim HR, Moon JH, Ham KS. Antihypertensive effects of Artemisia scoparia Waldst in spontaneously hypertensive rats and identification of angiotensin I converting enzyme inhibitors. Molecules 20: 19789–19804 (2015)

    Article  CAS  Google Scholar 

  13. Benavides G, Squadrito G, Mills RW, Patel HD, Isbell TS, Patel RP, Doeller JE, Darley-Usmar VM, Kraus DW. Hydrogen sulfide mediates the vasoactivity of garlic. Proc. Natl. Acad. Sci. USA. 204:17977–17982 (2007)

    Article  Google Scholar 

  14. Duron E, Hanon O. Hypertension, cognitive decline and dementia. Arch. Cardiovasc. Dis. 101(3): 181–189 (2008)

    Article  CAS  Google Scholar 

  15. Tian M, Zhu D, Xie W, Shi J. Central angiotensin II-induced Alzheimer-like tau phosphorylation in normal rat brains. FEBS Lett. 586: 3737–3745 (2012)

    Article  CAS  Google Scholar 

  16. Benedikz E, Kloskowska E, Winbland B. The rat as an animal model of Alzheimer’s disease. J. Cell. Mol. Med. 13: 1034–1042 (2009)

    Article  CAS  Google Scholar 

  17. Ellman GL, Courtney KD, Andres V Jr, Feather-Stone RM. A new and rapid colorimetric determination of Acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95 (1961)

    Article  CAS  Google Scholar 

  18. Hestrin S. The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical application. J. Biol. Chem. 180: 249–261 (1949)

    CAS  Google Scholar 

  19. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254 (1976)

    Article  CAS  Google Scholar 

  20. Ohno M, Sametsky EA, Younkin LH, Oakley H, Younkin SG, Citron M, Vassar R, Disterhoft JF. BACE1 deficiency rescues memory deficits and cholinergic dysfunction in a mouse model of Alzheimer’s disease. Neuron 41: 27–33 (2004)

    Article  CAS  Google Scholar 

  21. Donahue JE, Flaherty S L, Johanson CE, Duncan JA 3rd, Silverberg GD, Miller MC, Tavares R, Yang W, Wu Q, Sabo E, Hovanesian V, Stopa EG. RAGE, LRP-1, and amyloid-beta protein in Alzheimer’s disease. Acta Neuropathl. 112: 405–415 (2006)

    Article  CAS  Google Scholar 

  22. Dorfman VB, Pasquini L, Riudavets M, López-Costa JJ, Villegas A, Troncoso JC, Lopera F, Castaño EM, Morelli L. Differential cerebral deposition of IDE and NEP in sporadic and familial Alzheimer’s disease. Neurobiol. Aging 31: 1743–1757 (2010)

    Article  CAS  Google Scholar 

  23. Qiao J, Wang X, Lu W, Wang X, Ma A. Abnormal expression level of BACE1 and RAGE of hippocampus related to cognitive impairment in SHR. Ann. Clin. Exp. Hypertension 2: 1010 (2014)

    Google Scholar 

  24. Kurata T, Lukic V, Kozuki M, Wada D, Miyazaki K, Morimoto N, Ohta Y, Deguchi K, Yamashita T, Hishikawa N, Matsuzono K, Ikeda Y, Kamiya T, Abe K. Long-term effect of telmisartan on Alzheimer’s amyloid genesis in SHR-SR after tMCAO. Transl. Stroke Res. 6: 107–115 (2015)

    Article  CAS  Google Scholar 

  25. Oboh G, Akinyemi AJ, Ademiluyi AO, Bello FO. Inhibitory effect of some tropical green leafy vegetables on key enzymes linked to Alzheimer’s disease and some pro-oxidant induced lipid peroxidation in rats’ brain. J. Food Sci. Tech. 51: 884–891 (2014)

    Article  CAS  Google Scholar 

  26. Hampel H, Blennowd K, Shawe LM, Hoessler YC, Zetterberg H, Trojanowski JQ. Total and phosphorylated tau protein as biological markers of Alzheimer’s disease. Exp. Gerontol. 45: 30–40 (2010)

    Article  CAS  Google Scholar 

  27. Sontag E, Luangpirom A, Hladik C, Mudrak I, Ogris E, Speciale S, White CL. Altered expression levels of the protein phosphatase 2A ABαC enzyme are associated with Alzheimer disease pathology. J. Neuropathol. Exp. Neurol. 63: 287–301 (2004)

    Article  CAS  Google Scholar 

  28. Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: Cholinergic signaling shapes nervous system function and behavior. Neuron 76: 116–129 (2012)

    Article  CAS  Google Scholar 

  29. Čolović MB, Krstić DZ, Lazarević-Pašti TD, Bondžić AM, Vasić VM. Acetylcholinesterase inhibitors: Pharmacology and toxicology. Curr. Neuropharm. 11: 315–335 (2013)

    Article  Google Scholar 

  30. Agostinho P, Cunha RA, Oliveira C. Neuroinflammation, oxidative stress and the pathogenesis of Alzheimer’s disease. Curr. Pharm. Des. 16: 2766–2778 (2010)

    Article  CAS  Google Scholar 

  31. Lee MC, Shoji H, Miyazaki H, Yoshino F, Hori N, Toyoda M, Ikeda Y, Anzai K, Ikota N, Ozawa T. Assessment of oxidative stress in the spontaneously hypertensive rat brain using electron spin resonance (ESR) imaging and in vivo L-Band ESR. Hypertens. Res. 270: 485–492 (2004)

    Article  Google Scholar 

  32. Greilberger J, Koidl C, Greilberger M, Lamprecht M, Schroecksnadel K, Leblhuber F, Fuchs D, Oettl K. Malondialdehyde, carbonyl proteins and albumin-disulphide as useful oxidative markers in mild cognitive impairment and Alzheimer’s disease. Free Radic. Res. 42: 633–638 (2008)

    Article  CAS  Google Scholar 

  33. Schütze S, Wiegmann K, Machleidt T, Krönke M. TNF-induced activation of NF-kappa B. Immunobiology 193: 193–203 (1995)

    Article  Google Scholar 

  34. Saavedra JM. Evidence to consider angiotensin II receptor blockers for the treatment of early Alzheimer’s disease. Cell. Mol. Neurobiol. 36: 259–279 (2016)

    Article  CAS  Google Scholar 

  35. Gupta VB, Indi SS, Rao KS. Garlic extract exhibits antiamyloidogenic activity on amyloid-beta fibrillogenesis: relevance to Alzheimer’s disease. Phytother Res. 23: 111–115 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Grant 20130290 to the Solar Salt Research Center of Mokpo National University from the Ministry of Oceans and Fisheries of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Sik Ham.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Promyo, K., Cho, JY., Park, KH. et al. Artemisia scoparia attenuates amyloid β accumulation and tau hyperphosphorylation in spontaneously hypertensive rats. Food Sci Biotechnol 26, 775–782 (2017). https://doi.org/10.1007/s10068-017-0077-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0077-3

Keywords

Navigation