Skip to main content
Log in

Anti-oxidative and anti-inflammatory activities of devil’s club (Oplopanax horridus) leaves

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study aimed to investigate the anti-oxidative properties of the ethanolic extracts of the devil’s club (Oplopanax horridus) leaves, stems, and roots. Furthermore, the anti-inflammatory activity of the leaf extract was analyzed. The leaf extract had higher total phenolic and flavonoid contents and anti-oxidative activity (radical scavenging, reducing power, and inhibition of lipid oxidation) than the root and stem extracts. The leaf extract also had anti-inflammatory effects. It significantly reduced lipopolysaccharide (LPS)-induced nitric oxide (NO; 71.0% at 50 μg/mL), tumor necrosis factor (TNF)-α (87.6% at 100 μg/mL), and interleukin (IL)-6 (36.2% at 100 μg/mL) production in murine RAW 264.7 macrophages. Furthermore, LPS-induced inducible nitric oxide synthase (iNOS) expression was decreased by the leaf extract (IC50=24.4 μg/mL). The ultra performance liquid chromatography-diode array detector (UPLC-DAD) analysis showed that the leaf extract contained gallic acid, protocatechuic acid, chlorogenic acid, and maltol. These findings suggest that the leaf extract could be utilized as a functional food material because of its anti-oxidative and anti-inflammatory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tiwari S. Plants: A rich source of herbal medicine. J. Nat. Prod. 1: 27–35 (2008)

    Article  Google Scholar 

  2. Chan PC, Peckham JC, Malarkey DE, Kissling GE, Travlos GS, Fu PP. Two-year toxicity and carcinogenicity studies of Panax ginseng in Fischer 344 rats and B6C3F1 mice. Am. J. Chinese Med. 39: 779–788 (2011)

    Article  Google Scholar 

  3. Lantz TC, Antos JA. Clonal expansion in the deciduous understory shrub, devil's club (Oplopanax horridus; Araliaceae). Can. J. Botany 80: 1052–1062 (2002)

    Article  Google Scholar 

  4. Smith GW. Arctic pharmacognosia II. Devils club, Oplopanax horridus. J. Ethnopharmacol. 7: 313–320 (1983)

    Article  CAS  Google Scholar 

  5. Inui T, Wang Y, Deng S, Smith DC, Franzblau SG, Pauli GF. Counter-current chromatography based analysis of synergy in an anti-tuberculosis ethnobotanical. J. Chromatogr. A 1151: 211–215 (2007)

    Article  CAS  Google Scholar 

  6. Kobaisy M, Abramowski Z, Lermer L, Saxena G, Hancock RE, Towers GH, Doxsee D, Stokes RW. Antimycobacterial polyynes of Devil’s Club (Oplopanax horridus), a North American native medicinal plant. J. Nat. Prod. 60: 1210–1213 (1997)

    Article  CAS  Google Scholar 

  7. Sun S, Du GJ, Qi LW, Williams S, Wang CZ, Yuan CS. Hydrophobic constituents and their potential anticancer activities from Devil’s Club (Oplopanax horridus Miq.). J. Ethnopharmacol. 132: 280–285 (2010)

    Article  CAS  Google Scholar 

  8. Tai J, Cheung S, Chan E, Hasman D. Inhibition of human ovarian cancer cell lines by Devil’s club Oplopanax horridus. J. Ethnopharmacol. 127: 478–485 (2010)

    Article  Google Scholar 

  9. Calway T, Du GJ, Wang CZ, Huang WH, Zhao J, Li SP, Yuan CS. Chemical and pharmacological studies of Oplopanax horridus, a North American botanical. J. Nat. Med. 66: 249–256 (2012)

    Article  CAS  Google Scholar 

  10. Lantz TC, Swerhun K, Turner NJ. Devil's club (Oplopanax horridus): An ethnobotanical review. HerbalGram 62: 33–48 (2004)

    Google Scholar 

  11. Singleton VS, Rossi JA. Colorimetric of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult 16: 144–158 (1965)

    CAS  Google Scholar 

  12. Woisky RG, Salatino A. Analysis of propolis: Some parameters and procedures for chemical quality control. J. Apic. Res. 37: 99–105 (1998)

    Article  CAS  Google Scholar 

  13. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1199–1200 (1958)

    Article  CAS  Google Scholar 

  14. van den Berg R, Haenen GRMM, van den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 66: 511–517 (1999)

    Article  Google Scholar 

  15. Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)

    Article  CAS  Google Scholar 

  16. Moon JK, Shibamoto T. Antioxidant assays for plant and food components. J. Agr. Food Chem. 57: 1655–1666 (2009)

    Article  CAS  Google Scholar 

  17. Sharififar F, Dehghn-Nudeh G, Mirtajaldini M. Major flavonoids with antioxidant activity from Teucrium polium L. Food Chem. 112: 885–888 (2008)

    Article  Google Scholar 

  18. Taviano MF, Marino A, Trovato A, Bellinghieri V, Melchini A, Dugo P, Cacciola F, Donato P, Mondello L, Güvenç A, de Pasquale R, Miceli N. Juniperus oxycedrus L. subsp. oxycedrus and Juniperus oxycedrus L. subsp. macrocarpa (Sibth. & Sm.) Ball. “berries” from Turkey: Comparative evaluation of phenolic profile, antioxidant, cytotoxic and antimicrobial activities. Food Chem. Toxicol. 58: 22–29 (2013)

    CAS  Google Scholar 

  19. Pérez-Jiménez J, Arranz S, Tabernero M, Díaz-Rubio ME, Serrano J, Goñi I, Saura-Calixto F. Updated methodology to determine antioxidant capacity in plant foods, oils and beverages: Extraction, measurement and expression of results. Food Res. Int. 41: 274–285 (2008)

    Article  Google Scholar 

  20. Fukumoto LR, Mazza G. Assessing antioxidant and pro-oxidant activities of phenolic compounds. J. Agr. Food Chem. 48: 3597–3604 (2000)

    Article  CAS  Google Scholar 

  21. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J. Agr. Food Chem. 53: 1841–1856 (2005)

    Article  CAS  Google Scholar 

  22. Sudha G, Janardhanan A, Moorthy A, Chinnasamy M, Gunasekaran S, Thimmaraju A, Gopalan J. Comparative study on the antioxidant activity of methanolic and aqueous extracts from the fruiting bodies of an edible mushroom Pleurotus djamor. Food Sci. Biotechnol. 25: 371–377 (2016)

    Article  CAS  Google Scholar 

  23. Biswas M, Haldar PK, Ghosh AK. Antioxidant and free-radical-scavenging effects of fruits of Dregea volubilis. J. Nat. Sci. Biol. Med. 1: 29–34 (2010)

    Article  Google Scholar 

  24. Draper HH, Hadley M. Malondialdehyde determination as index of lipid peroxidation. Method. Enzymol. 186: 421–431 (1990)

    Article  CAS  Google Scholar 

  25. Dudonne S, Vitrac X, Coutiere P, Woillez M, Merillon JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agr. Food Chem. 57: 1768–1774 (2009)

    Article  CAS  Google Scholar 

  26. Osawa T. Novel natural antioxidants for utilization in food and biological systems. pp. 241–251. In: Postharvest Biochemistry of Plant Food-Materials in the Tropics. Uritani I, Garcia VV, Mendoza EM (eds). Japan Scientific Societies Press, Tokyo, Japan (1994)

    Google Scholar 

  27. Lee CJ, Chen LG, Chang TL, Ke WM, Lo YF, Wang CC. The correlation between skin-care effects and phytochemical contents in Lamiaceae plants. Food Chem. 124: 833–841 (2011)

    Article  CAS  Google Scholar 

  28. de Cruz SJ, Kenyon NJ, Sandrock CE. Bench-to-bedside review: The role of nitric oxide in sepsis. Expert Rev. Respir. Med. 3: 511–521 (2009)

    Article  Google Scholar 

  29. Stone KD, Prussin C, Metcalfe DD. IgE, mast cells, basophils, and eosinophils. J. Allergy Clin. Immun. 125: S73–S80 (2010)

    Article  Google Scholar 

  30. Chen HH, Lin HT, Foung YF, Lin JHY. The bioactivity of teleost IL-6: IL-6 protein in orange-spotted grouper (Epinephelus coioides) induces Th2 cell differentiation pathway and antibody production. Dev. Comp. Immunol. 38: 285–294 (2012)

    Article  CAS  Google Scholar 

  31. O’Shea JJ, Ma A, Lipsky P. Cytokines and autoimmunity. Nat. Rev. Immunol. 2: 37–45 (2002)

    Article  Google Scholar 

  32. Strlic M, Radovic T, Kolar J, Pihlar B. Anti-and prooxidative properties of gallic acid in fenton-type systems. J. Agr. Food Chem. 50: 6313–6317 (2002)

    Article  CAS  Google Scholar 

  33. Hsu CC, Hsu CL, Tsai SE, Fu TY, Yen GC. Protective effect of Millettia reticulata Benth against CCl4-induced hepatic damage and inflammatory action in rats. J. Med. Food. 12: 821–828 (2009)

    Article  CAS  Google Scholar 

  34. dos Santos MD, Almeida MC, Lopes NP, de Souza GE. Evaluation of the antiinflammatory, analgesic and antipyretic activities of the natural polyphenol chlorogenic acid. Biol. Pharm. Bull. 29: 2236–2240 (2006)

    Article  Google Scholar 

  35. Hong YL, Pan HZ, Scott MD, Meshnick SR. Activated oxygen generation by a primaquine metabolite: Inhibition by antioxidants derived from Chinese herbal remedies. Free Radical Bio. Med. 12: 213–218 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Won Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, M., Lee, YC., Hong, HD. et al. Anti-oxidative and anti-inflammatory activities of devil’s club (Oplopanax horridus) leaves. Food Sci Biotechnol 26, 213–220 (2017). https://doi.org/10.1007/s10068-017-0029-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0029-y

Keywords

Navigation