Skip to main content
Log in

Effect of (–)-epigallocatechin-3-gallate on anti-inflammatory response via heme oxygenase-1 induction during adipocyte–macrophage interactions

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, we examined the effects of (–)-epigallocatechin-3-gallate (EGCG) on anti-inflammatory responses through the induction of heme oxygenase-1 (HO-1) in cocultured macrophages and adipocytes. EGCG significantly decreased the secretion of nitric oxide (NO) and monocyte chemoattractant protein-1 in the coculture of RAW 264.7 macrophages and differentiated 3T3-L1 adipocytes. In addition, EGCG inhibited the expression of inducible nitric oxide synthase in cocultured macrophages and peroxisome proliferator-activated receptor-gamma in cocultured adipocytes. Furthermore, the HO-1 expression showed an approximately 4-fold increase in cocultured adipocytes and an approximately 6-fold increase in cocultured macrophages. Lastly, HO-1 silencing induced NO generation in cocultured cells regardless of EGCG treatment. These results indicate that EGCG inhibited inflammatory responses by suppressing the production of proinflammatory cytokines through HO-1 induction during adipocyte–macrophage interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW, Jr. Obesity is associated with macrophage accumulation in adipose tissue. J. Clin. Invest. 112: 1796–1808 (2003)

    Article  CAS  Google Scholar 

  2. Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 112: 1821–1830 (2003)

    Article  CAS  Google Scholar 

  3. Suganami T, Nishida J, Ogawa Y. A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: Role of free fatty acids and tumor necrosis factor alpha. Arterioscl. Throm. Vas. 25: 2062–2068 (2005)

    Article  CAS  Google Scholar 

  4. Solinas G, Vilcu C, Neels JG, Bandyopadhyay GK, Luo J L, Naugler W, Grivennikov S, Wynshaw-Boris A, Scadeng M, Olefsky JM, Karin M. JNK1 in hematopoietically derived cells contributes to diet-induced inflammation and insulin resistance without affecting obesity. Cell Metab. 6: 386–397 (2007)

    Article  CAS  Google Scholar 

  5. Donath MY, Shoelson SE. Type 2 diabetes as an inflammatory disease. Nat. Rev. Immunol. 11: 98–107 (2011)

    Article  CAS  Google Scholar 

  6. Cavet ME, Harrington KL, Vollmer TR, Ward KW, Zhang JZ. Anti-inflammatory and anti-oxidative effects of the green tea polyphenol epigallocatechin gallate in human corneal epithelial cells. Mol. Vis. 17: 533–542 (2011)

    CAS  Google Scholar 

  7. Lin JK, Liang YC, Lin-Shiau SY. Cancer chemoprevention by tea polyphenols through mitotic signal transduction blockade. Biochem. Pharmacol. 58: 911–915 (1999)

    Article  CAS  Google Scholar 

  8. Lee H, Bae S, Yoon Y. The anti-adipogenic effects of (-)epigallocatechin gallate are dependent on the WNT/beta-catenin pathway. J. Nutr. Biochem. 24: 1232–1240 (2013)

    Article  CAS  Google Scholar 

  9. Otterbein LE, Bach FH, Alam J, Soares M, Tao Lu H, Wysk M, Davis RJ, Flavell RA, Choi AM. Carbon monoxide has anti-inflammatory effects involving the mitogen-activated protein kinase pathway. Nat. Med. 6: 422–428 (2000)

    Article  CAS  Google Scholar 

  10. Motterlini R, Foresti R, Bassi R, Green CJ. Curcumin, an antioxidant and antiinflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radical. Bio. Med. 28: 1303–1312 (2000)

    Article  CAS  Google Scholar 

  11. Pullikotil P, Chen H, Muniyappa R, Greenberg CC, Yang S, Reiter CE, Lee JW, Chung JH, Quon MJ. Epigallocatechin gallate induces expression of heme oxygenase-1 in endothelial cells via p38 MAPK and Nrf-2 that suppresses proinflammatory actions of TNF-alpha. J. Nutr. Biochem. 23: 1134–1145 (2012)

    Article  CAS  Google Scholar 

  12. Kim DH, Vanella L, Inoue K, Burgess A, Gotlinger K, Manthati VL, Koduru SR, Zeldin DC, Falck JR, Schwartzman ML, Abraham NG. Epoxyeicosatrienoic acid agonist regulates human mesenchymal stem cell-derived adipocytes through activation of HO-1-pAKT signaling and a decrease in PPARgamma. Stem Cells Dev. 19: 1863–1873 (2010)

    Article  CAS  Google Scholar 

  13. Vanella L, Kim DH, Sodhi K, Barbagallo I, Burgess AP, Falck JR, Schwartzman ML, Abraham NG. Crosstalk between EET and HO-1 downregulates Bach1 and adipogenic marker expression in mesenchymal stem cell derived adipocytes. Prostag. Oth. Lipid M. 96: 54–62 (2011)

    Article  CAS  Google Scholar 

  14. Chang TH, Polakis SE. Differentiation of 3T3-L1 fibroblasts to adipocytes. Effect of insulin and indomethacin on the levels of insulin receptors. J. Biol. Chem. 253: 4693–4696 (1978)

    CAS  Google Scholar 

  15. Tobe K, Kasuga M, Kitasato H, Takaku F, Takano T, Segawa K. Differential effects of DNA tumor virus nuclear oncogene products on adipocyte differentiation. FEBS Lett. 215: 345–349 (1987)

    Article  CAS  Google Scholar 

  16. Lin J, Della-Fera MA, Baile CA. Green tea polyphenol epigallocatechin gallate inhibits adipogenesis and induces apoptosis in 3T3-L1 adipocytes. Obes. Res. 13: 982–990 (2005)

    Article  CAS  Google Scholar 

  17. Liu HS, Chen YH, Hung PF, Kao YH. Inhibitory effect of green tea (-)-epigallocatechin gallate on resistin gene expression in 3T3-L1 adipocytes depends on the ERK pathway. Am. J. Physiol.-Endoc. M. 290: E273–E281 (2006)

    CAS  Google Scholar 

  18. Lin YL, Lin JK. (-)-Epigallocatechin-3-gallate blocks the induction of nitric oxide synthase by down-regulating lipopolysaccharide-induced activity of transcription factor nuclear factor-kappaB. Mol. Pharmacol. 52: 465–472 (1997)

    CAS  Google Scholar 

  19. Hobbs AJ, Higgs A, Moncada S. Inhibition of nitric oxide synthase as a potential therapeutic target. Annu. Rev. Pharmacol. 39: 191–220 (1999)

    Article  CAS  Google Scholar 

  20. Kanda H, Tateya S, Tamori Y, Kotani K, Hiasa K, Kitazawa R, Kitazawa S, Miyachi H, Maeda S, Egashira K, Kasuga M. MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J. Clin. Invest. 116: 1494–1505 (2006)

    Article  CAS  Google Scholar 

  21. Ma KL, Ruan XZ, Powis SH, Chen Y, Moorhead JF, Varghese Z. Inflammatory stress exacerbates lipid accumulation in hepatic cells and fatty livers of apolipoprotein Eknockout mice. Hepatology 48: 770–781 (2008)

    Article  CAS  Google Scholar 

  22. Ando C, Takahashi N, Hirai S, Nishimura K, Lin S, Uemura T, Goto T, Yu R, Nakagami J, Murakami S, Kawada T. Luteolin, a food-derived flavonoid, suppresses adipocyte-dependent activation of macrophages by inhibiting JNK activation. FEBS Lett. 583: 3649–3654 (2009)

    Article  CAS  Google Scholar 

  23. Jung HW, Yoon CH, Park KM, Han HS, Park YK. Hexane fraction of Zingiberis Rhizoma Crudus extract inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated BV2 microglial cells via the NFkappaB pathway. Food Chem. Toxicol. 47: 1190–1197 (2009)

    Article  CAS  Google Scholar 

  24. Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: Structure, function and inhibition. Biochem. J. 357: 593–615 (2001)

    Article  CAS  Google Scholar 

  25. Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD, Brun RP, Mueller E, Altiok S, Oppenheim H, Evans RM, Spiegelman BM. Terminal differentiation of human liposarcoma cells induced by ligands for peroxisome proliferator-activated receptor gamma and the retinoid X receptor. P. Natl. Acad. Sci. USA 94: 237–241 (1997)

    Article  CAS  Google Scholar 

  26. Pinent M, Espinel AE, Delgado MA, Baiges I, Blade C, Arola L. Isoflavones reduce inflammation in 3T3-L1 adipocytes. Food Chem. 125: 513–520 (2011)

    Article  CAS  Google Scholar 

  27. Ricote M, Glass CK. PPARs and molecular mechanisms of transrepression. Biochim. Biophys. Acta 1771: 926–935 (2007)

    Article  CAS  Google Scholar 

  28. Motterlini R, Foresti R. Heme oxygenase-1 as a target for drug discovery. Antioxid. Redox. Sign. 20: 1810–1826 (2014)

    Article  CAS  Google Scholar 

  29. Choi JW, Lee CW, Lee J, Choi DJ, Sohng JK, Park YI. 7,8-Dihydroxyflavone inhibits adipocyte differentiation via antioxidant activity and induces apoptosis in 3T3-L1 preadipocyte cells. Life Sci. 144: 103–112 (2015)

    Article  Google Scholar 

  30. Li M, Kim DH, Tsenovoy PL, Peterson SJ, Rezzani R, Rodella LF, Aronow WS, Ikehara S, Abraham NG. Treatment of obese diabetic mice with a heme oxygenase inducer reduces visceral and subcutaneous adiposity, increases adiponectin levels, and improves insulin sensitivity and glucose tolerance. Diabetes 57: 1526–1535 (2008)

    Article  CAS  Google Scholar 

  31. Bruce CR, Carey AL, Hawley JA, Febbraio M A. Intramuscular h eat shock protein 72 and heme oxygenase-1 mRNA are reduced in patients with type 2 diabetes: Evidence that insulin resistance is associated with a disturbed antioxidant defense mechanism. Diabetes 52: 2338–2345 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junsoo Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, Y., Lee, J. Effect of (–)-epigallocatechin-3-gallate on anti-inflammatory response via heme oxygenase-1 induction during adipocyte–macrophage interactions. Food Sci Biotechnol 25, 1767–1773 (2016). https://doi.org/10.1007/s10068-016-0269-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0269-2

Keywords

Navigation