Skip to main content
Log in

Lipid-lowering effects of Zanthoxylum schinifolium Siebold & Zucc. seed oil (ZSO) in hyperlipidemic rats and lipolytic effects in 3T3-L1 adipocytes

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

On the basis of the antiatherosclerotic effect of Zanthoxylum schinifolium, the therapeutic potential of Zanthoxylum schinifolium seed oil (ZSO) was tested in terms of the blood lipid profile and obesity in rats. The lipolytic effects of ZSO were determined in adipocytes and the total body and liver weight were decreased in rats. Compared with the high-cholesterol high-fat (HCHF) group, the rats in the HCHF+ZSO group showed improved levels of hyperlipidemia indicators. Furthermore, western blot analysis confirmed that the improvement of hyperlipidemia indicators was induced by stimulation of lipoprotein lipase expression. Additional results indicated that the reduction in body weight was likely caused by phosphorylation of hormone-sensitive lipase (HSL) via the protein kinase A pathway, ultimately leading to lipolysis. In conclusion, the results of the in vivo experiment showed that ZSO improved the lipid profiles in the blood, lowering cardiovascular disease and arteriosclerosis and degrading cellular lipids by activating HSL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim JK. Oil and fat industry. Food Ind. 181: 10–37 (2004)

    Google Scholar 

  2. Gurr MI, Harwood JL, Frayn KN. Lipid biochemistry. 5th ed. Blackwell Science Ltd., Oxford, UK. pp. 127–169 (2002)

    Book  Google Scholar 

  3. Yoon DH, Choi YS. Influence of red pepper (Capsicum annuum L.) seed oil and sancho (Zanthoxylum schinifolium) seed oil on serum and liver lipids profiles in rats. Korean J. Food Sci. Technol. 40: 96–100 (2008)

    Google Scholar 

  4. Mun SI. Effects of Zanthoxylum schinifolium and its active principle on serum lipid levels in carbon tetrachloride-treated mice. J. Korean Soc. Food Sci. Nutr. 13: 249–254 (2000)

    Google Scholar 

  5. NIH Consensus Development Conference Statement. Lowering blood cholesterol to prevent heart disease. Arteriosclerosis 5: 404–412 (1985)

    Article  Google Scholar 

  6. Muntner P, He J, Astor BC, Folsom AR, Coresh J. Traditional and nontraditional risk factors predict coronary heart disease in chronic kidney disease: Results from the atherosclerosisrisk in communities study. J. Am. Soc. Nephrol. 16: 529–538 (2005)

    Article  Google Scholar 

  7. Kim MJ, Jun HY, Kim JH. Antiadipogenic effect of Korean glasswort (Salicornia herbacea L.) water extract on 3T3-L1 adipocytes. J. Korean Soc. Food Sci. Nutr. 43: 814–821 (2014)

    Article  CAS  Google Scholar 

  8. Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endoc. M. 297: E271–E288 (2009)

    CAS  Google Scholar 

  9. Braun JE, Severson DL. Regulation of the synthesis, processing and translocation of lipoprotein lipase. Biochem. J. 287: 337–347 (1992)

    Article  CAS  Google Scholar 

  10. Amar MJ, Sakurai T, Sakurai-Ikuta A, Sviridov D, Freeman L, Ahsan L, Remaley AT. A novel apolipoprotein C-II mimetic peptide that activates lipoprotein lipase and decreases serum triglycerides in apolipoprotein E-knockout mice. J. Pharmacol. Exp. Ther. 352: 227–235 (2015)

    Article  Google Scholar 

  11. Weinstock PH, Bisgaier CL, Aalto-Setälä K, Radner H, Ramakrishnan R, Levak-Frank S, Essenburg AD, Zechner R, Breslow JL. Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes. J. Clin. Invest. 96: 2555–2568 (1995)

    CAS  Google Scholar 

  12. Kopelman PG. Obesity as a medical problem. Nature 404: 635–643 (2000)

    CAS  Google Scholar 

  13. Okabe Y, Shimada T, Horikawa T, Kinoshita K, Koyama K, Ichinose K, Aburada M, Takahashi K. Suppression of adipocyte hypertrophy by polymethoxyflavonoids isolated from Kaempferia parviflora. Phytomedicine 21: 800–806 (2014)

    Article  CAS  Google Scholar 

  14. Chaves VE, Frasson D, Kawashita NH. Several agents and pathways regulate lipolysis in adipocytes. Biochimie 93: 1631–1640 (2011)

    Article  CAS  Google Scholar 

  15. Holm C. Molecular mechanisms regulating hormone-sensitive lipase and lipolysis. Biochem. Soc. T. 31: 1120–1124 (2003)

    Article  CAS  Google Scholar 

  16. Jaworski K, Sarkadi-Nagy E, Duncan RE, Ahmadian M, Sul HS. Regulation of triglyceride metabolism. IV. Hormonal regulation of lipolysis in adipose tissue. Am. J. Physol-gastr. L. 293: G1–G4 (2007)

    CAS  Google Scholar 

  17. Kim SO, Sakchaisri K, Asami Y, Ryoo IJ, Choo SJ, Yoo ID, Soung NK, Kim YS, Jang JH, Kim BY, Ahn JS. Illudins C2 and C3 stimulate lipolysis in 3T3-L1 adipocytes and suppress adipogenesis in 3T3-L1 preadipocytes. J. Nat. Prod. 77: 744–750 (2014)

    Article  CAS  Google Scholar 

  18. Watkins BA, Shen CL, McMurtry JP, Xu H, Bain SD, Allen KG, Seifert MF. Dietary lipids modulate bone prostaglandin E2 production, insulin-like growth factor-I concentration and formation rate in chicks. J. Nutr. 127: 1084–1091 (1997)

    CAS  Google Scholar 

  19. Ministry of Food and Drug Safety. Available from: http://fse.foodnara.go.kr/residue/RS/jsp/menu_02_01_01.jsp. Accessed Apr. 03, 2015.

  20. Kim KK, Kang YH, Kim DJ, Kim TW, Lee JI, Choe M. Analysis of fatty acid composition and effects of pumpkin seed oil on human umbilical vein entothelial cells. J. East Asian Soc. Diet. Life 24: 351–358 (2014)

    Google Scholar 

  21. Oh SD, Kim M, Min BI, Choi GS, Kim SK, Bae H, Kang C, Kim DG, Park BJ, Kim CK. Effect of Achyranthes bidentata Blume on 3T3-L1 adipogenesis and rats fed with a high-fat diet. Evid-Based Compl. Alt. 2014: 158018 (2014)

    Google Scholar 

  22. Kabir Y, Ide T. Activity of hepatic fatty acid oxidation enzymes in rats fed a-linolenic acid. Biochim. Biophys. Acta 1304: 105–119 (1996)

    Article  Google Scholar 

  23. Ayerza R, Coates W. Ground chia seed and chia oil effects on plasma lipids and fatty acids in the rat. Nutr. Res. 25: 995–1003 (2005)

    Article  CAS  Google Scholar 

  24. Popa CD, Arts E, Fransen J, van Riel PL. Atherogenic index and high-density lipoprotein cholesterol as cardiovascular risk determinants in rheumatoid arthritis: the impact of therapy with biologicals. Mediat. Inflamm. 2012: 785946 (2012)

    Article  Google Scholar 

  25. Oh M, Chung MS. Effects of oil and essential oils from seeds of Zanthoxylum schinifolium against foodborne viral surrogates. Evid-Based Compl. Alt. 2014: 135797 (2014)

    Google Scholar 

  26. Ansell BJ, Watson KE, Fogelman AM. An evidence-based assessment of the NCEP adult treatment panel II guidelines. national cholesterol education program. JAMA 282: 2051–2057 (1999)

    CAS  Google Scholar 

  27. Anthony MS, Clarkson TB, Bullock BC, Wagner JD. Soy protein versus soy phytoestrogens in the prevention of diet-induced coronary artery atherosclerosis of male cynomolgus monkeys. Arterioscl. Throm. Vas. 17: 2524–2531 (1997)

    Article  CAS  Google Scholar 

  28. Sirtori CR. HDL and the progression of atherosclerosis: New insight. Eur. Heart J. Suppl. 8(supplement F): F4–F9 (2006)

    Article  CAS  Google Scholar 

  29. Vickers S, Duncan CA, Vyas KP, Kari PH, Arison B, Prakash SR, Ramjit HG, Pitzenberger SM, Stokker G, Duggan DE. in vitro and in vivo biotransformation of simvastatin, an inhibitor of HMG CoA reductase. Drug Metab. Dispos. 18: 476–483 (1990)

    CAS  Google Scholar 

  30. Suanarunsawat T, Boonnak T, Na Ayutthaya WD, Thirawarapan S. Antihyperlipidemic and cardioprotective effects of Ocimum sanctum L. fixed oil in rats fed a high fat diet. J. Basic Clin. Physiol. Pharmacol. 21: 387–400 (2010)

    CAS  Google Scholar 

  31. Behme MT. Leptin: Product of the obese gene. Nutr. Today 31: 138–141 (1996)

    Article  Google Scholar 

  32. Haemmerle G, Zimmermann R, Hayn M, Theussl C, Waeg G, Wagner E, Sattler W, Magin TM, Wagner EF, Zechner R. Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277: 4806–4815 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeon Choe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.K., Kim, T.W., Kang, Y.H. et al. Lipid-lowering effects of Zanthoxylum schinifolium Siebold & Zucc. seed oil (ZSO) in hyperlipidemic rats and lipolytic effects in 3T3-L1 adipocytes. Food Sci Biotechnol 25, 1427–1436 (2016). https://doi.org/10.1007/s10068-016-0222-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0222-4

Keywords

Navigation