Skip to main content

Mineral nutrient interaction: Improving bioavailability of calcium and iron

Abstract

Insufficient uptake of essential metals leads to serious malnutrition, which is a worldwide problem. Low bioavailability of iron and calcium may lead to anemia and osteoporosis, respectively, even in individuals with a high dietary intake. For iron, fractionation of meat proteins was studied in order to increase iron bioavailability from other meal components, and uptake of iron was found to increase with minimal risk of increasing oxidative damage. Calcium binding to peptides was found to prevent formation of insoluble calcium salts otherwise hampering absorption particularly in combination with calcium hydroxycarboxylates, entailing spontaneous supersaturation. Based on a review of results from different strategies available for increasing bioavailability, safe iron fortification is suggested to be supported by calcium, with modulation of iron as a prooxidant.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Thorpe MP, Evans EM. Dietary protein and bone health: Harmonizing conflicting theories. Nutr. Rev. 69: 215–230 (2011)

    Article  Google Scholar 

  2. 2.

    Gasche C, Lomer M, Cavill I, Weiss G. Iron, anaemia and inflammatory bowl diseases. Gut 53: 1190–1197 (2004)

    CAS  Article  Google Scholar 

  3. 3.

    Geissler C, Singh M. Iron, meat and health. Nutrients 3: 283–316 (2011)

    Article  Google Scholar 

  4. 4.

    Pan A, Sun Q, Bernstein AM, Schulze MB, Manson JAE, Stampfer MJ, Willett WC, Hu FB. Red meat consumption and mortality: Results from prospective cohort studies. Arch. Intern. Med. 172: 555–563 (2012)

    Article  Google Scholar 

  5. 5.

    Carlsen CU, Møller JKS, Skibsted LH. Heme iron in lipid oxidation. Coordin. Chem. Rev. 246: 485–498 (2005)

    Article  Google Scholar 

  6. 6.

    Scheers N. Regulatory effects of Cu, Zn, and Ca on Fe absorption: The intricate play between nutrients. Nutrients 5: 957–970 (2013)

    CAS  Article  Google Scholar 

  7. 7.

    Bechtold T, Burtscher E, Turcanu A. Ca2+-Fe2+-D-gluconate-complexes in alkaline solution. Complex stabilities and electrochemical properties. J. Chem. Soc. Dalton 2002: 2683–2688 (2002)

    Article  Google Scholar 

  8. 8.

    Lorrain B, Dangles O, Genot C, Dufour C. Chemical modelling of heme-induced lipid oxidation in gastric conditions and inhibition by dietary polyphenols. J. Agr. Food Chem. 58: 676–683 (2010)

    CAS  Article  Google Scholar 

  9. 9.

    Sy C, Caris-Veyrat C, Dufour C, Boutaleb M, Borel P, Dangles O. Inhibition of iron-induced lipid peroxidation by newly identified bacterial carotenoids in model gastric conditions: Comparison with common carotenoids. Food Funct. 4: 698–712 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    Guéguen L, Pointillart A. The bioavailability of dietary calcium. J. Am. Coll. Nutr. 19: 119S–136S (2000)

    Article  Google Scholar 

  11. 11.

    Allen LH. Calcium bioavailability and absorption: A review. Am. J. Clin. Nutr. 35: 783–808 (1982)

    CAS  Google Scholar 

  12. 12.

    Fairweather-Tait SJ, Teucher B. Iron and calcium bioavailability of fortified foods and dietary supplements. Nutr. Rev. 60: 360–369 (2002)

    Article  Google Scholar 

  13. 13.

    Goss SL, Lemons KA, Kerstetter JE, Bogner H. Determination of calcium salt solubility with changes in pH and pCO2, simulating varying gastrointestinal environments. J. Pharm. Pharmacol. 59: 1485–1492 (2007)

    Article  Google Scholar 

  14. 14.

    Vavrusova M, Raitio R, Orlien V, Skibsted LH. Calcium hydroxyl palmitate: Possible precursor phase in calcium precipitation by palmitate. Food Chem. 138: 2415–2420 (2013)

    CAS  Article  Google Scholar 

  15. 15.

    Vavrusova M, Skibsted LH. Spontaneous supersaturation of calcium Dgluconate during isothermal dissolution of calcium L-lactate in aqueous sodium D-gluconate. Food Funct. 5: 85–91 (2014)

    CAS  Article  Google Scholar 

  16. 16.

    Singh G, Arora S, Sharma GS, Kansal JK, Songwan RB. Heat stability and calcium bioavailability of calcium-fortified milk. LWT–Food Sci. Technol. 40: 625–631 (2007)

    CAS  Google Scholar 

  17. 17.

    Pak CYC, Harvey JA, Hsu MC. Enhanced calcium bioavailability from a solubilized form of calcium citrate. J. Clin. Endocr. Metab. 65: 801–805 (1987)

    CAS  Article  Google Scholar 

  18. 18.

    Tondapu P, Provost D, Adams-Huet A, Sims T, Chang C, Sakhae K. Comparison of the absorption of calcium carbonate and calcium citrate after Roux-en-Y gastric bypass. Obes. Surg. 19: 1256–1261 (2009)

    CAS  Article  Google Scholar 

  19. 19.

    Bronner F. Intestinal calcium absorption-mechanism and applications. J. Nutr. 117: 1347–1352 (1987)

    CAS  Google Scholar 

  20. 20.

    Vavrusova M, Skibsted LH. Calcium nutrition. Bioavailability and fortification. LWT–Food Sci. Technol. 59: 1198–1204 (2014)

    CAS  Google Scholar 

  21. 21.

    Wasserman RH, Comar CL, Nold MM. The Influence of amino acids and other organic compounds on the gatrointestinal absorption of calcium-45 and strontium-89 in the rat. J. Nutr. 59: 371–383 (1956)

    CAS  Google Scholar 

  22. 22.

    Vavrusova M, Liang R, Skibsted LH. Thermodynamics of dissolution of calcium hydroxycarboxylates in water. J. Agr. Food Chem. 62: 5675–5681 (2014)

    CAS  Article  Google Scholar 

  23. 23.

    Bæch SB, Hansen M, Bukhave K, Jensen M, Kristensen L, Purslow PP, Skibsted LH, Sandström B. Nonheme-iron absorption from a phytate-rich meal is increased by the addition of small amounts of meat. Am. J. Clin. Nutr. 77: 173–179 (2003)

    Google Scholar 

  24. 24.

    Zhou Y, Xue S, Yang JJ. Calciomics: Integrative studies of Ca2+ binding proteins and their interoctomes in biological systems. Metallomics 5: 29–42 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    Taylor EN, Carhan GC. Dietary calcium from dairy and non-dairy sources, and risk of symptomatic kidney stones. J. Urology 190: 1255–1259 (2013)

    CAS  Article  Google Scholar 

  26. 26.

    Chatterjee KP, Dhar NR. Studies of sparingly soluble salts, readily obtained from hot solutions of reacting substances. J. Phys. Chem. 28: 1009–2028 (1924)

    CAS  Article  Google Scholar 

  27. 27.

    Irani RR, Callis CF. Metal complexing by phosphorus compounds. II. Solubilities of calcium soaps of linear carboxylic acids. J. Phys. Chem. 64: 1741–1743 (1960)

    CAS  Google Scholar 

  28. 28.

    Ostwald W. Studies of the formation and transformation of solids. Z. J. Phys. Chem. 22: 289–330 (1899)

    Google Scholar 

  29. 29.

    Zong H, Peng IJ, Zhang SS, Ling Y, Feng FQ. Effects of molecular structure on the calcium-binding properties of phosphopeptides. Eur. Food Res. Technol. 235: 811–816 (2012)

    CAS  Article  Google Scholar 

  30. 30.

    Cai X, Lina Z, Shaoyun W, Rao P. Fabrication and characterization of the nanocomposite of whey protein hydrolysate chelated with calcium. Food Funct. 6: 816–823 (2015)

    CAS  Article  Google Scholar 

  31. 31.

    Davies CW, Hoyles BE. The interaction of calcium ions with some phosphate and citrate buffers. J. Chem. Soc. 1953: 4134–4136 (1953)

    Article  Google Scholar 

  32. 32.

    Marshall RW, Naucolla GH. Kinetics of growth of dicalcium phosphate dihydrate. J. Phys. Chem. 73: 3838–3244 (1969)

    CAS  Article  Google Scholar 

  33. 33.

    Brecevic L, Nielsen AE. Solubility of amorphous calcium-carbonate. J. Cryst. Growth 98: 504–510 (1989)

    CAS  Article  Google Scholar 

  34. 34.

    Vavrusova M, Skibsted LH. Calcium binding to peptides of aspartate and glutamate in comparison with ortophosphoserine. J. Agr. Food Chem. 61: 5380–5384 (2013)

    CAS  Article  Google Scholar 

  35. 35.

    Zhao L, Cai X, Huang S, Wang S, Huang Y, Hong J, Rao P. Isolation and identification of a whey protein-sourced calcium-binding tripeptide Tyr-Asp-Thr. Int. Dairy J. 40: 16–23 (2015)

    CAS  Article  Google Scholar 

  36. 36.

    Huang S, Zhao LN, Cai X, Wang SY, Huang YF, Hong J, Rao PF. Purification and characterisation of a glutamic acid-containing peptide with calcium-binding capacity from whey protein hydrolysate. J. Dairy Res. 82: 29–35 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    Zhao L, Huang S, Cai X, Hong J, Wang S. A specific peptide with calcium chelating capacity isolated from whey protein hydrolysate. J. Funct. Foods 10: 45–33 (2014)

    CAS  Article  Google Scholar 

  38. 38.

    Zhao L, Huang Q, Huang S, Lin J, Wang S, Huang Y, Hong J, Rao P. Novel peptide with a specific calcium-binding capacity from whey protein hydrolysate and the possible chelating mode. J. Agr. Food Chem. 62: 10274–10282 (2014)

    CAS  Article  Google Scholar 

  39. 39.

    Lin J, Cai X, Tang M, Wang S. Preparation and evaluation of the chelating nanocomposite fabricated with marine algae Schizochytrium sp. protein hydrolysate and calcium. J. Agr. Food Chem. 63: 9704–9714 (2015)

    CAS  Article  Google Scholar 

  40. 40.

    Lv Y, Liu H, Ren J, Li X, Guo S. The positive effect of soybean protein hydrolysates–calcium complexes on bone mass of rapidly growing rats. Food Funct. 4: 1245–1251 (2013)

    CAS  Article  Google Scholar 

  41. 41.

    Kitts DD, Yan YV. Caseinophosphopeptides and calcium biovailability. Trends Food Sci. Tech. 3: 31–35 (1992)

    CAS  Article  Google Scholar 

  42. 42.

    Berrocal R, Chanton S, Juillerat MA, Pavillard B, Scherz JC, Jost R. Tryptic phosphopeptides from whole casein. II. Physicochemical properties related to the solubilization of calcium. J. Dairy Res. 56: 335–341 (1989)

    CAS  Google Scholar 

  43. 43.

    Vavrusova M, Munk MB, Skibsted LH. Aqueous solubility of calcium L-Lactate, calcium D-gluconate, and calcium D-Lactobionate: Importance of complex formation for solubility increase by hydroxycarboxylate mixtures. J. Agr. Food Chem. 61: 8207–8214 (2013)

    CAS  Article  Google Scholar 

  44. 44.

    de Kruif CG. The structure of casein micelles: A review of small-angle scattering data. J. Appl. Crystallogr. 47: 1479–1489 (2014)

    Article  Google Scholar 

  45. 45.

    Knudsen JC, Skibsted LH. High pressure effects on the structure of casein micelles in milk as studied by cryo-transmission electron microscopy. Food Chem. 119: 202–208 (2010)

    CAS  Article  Google Scholar 

  46. 46.

    Holt C, Lenton S, Nylander T, Sorenseen ES, Teixeira SC. Mineralisation of soft and hard tissues and stability of biofluids. J. Struct. Biol. 185: 383–396 (2014)

    CAS  Article  Google Scholar 

  47. 47.

    Koutina G, Knudsen JC, Skibsted LH. The effect of pH on calcium and phosphorus distribution between micellar and serum phase after enrichment of skim milk with calcium D-lactobionate. Dairy Sci. Technol. 95: 63–74 (2015)

    CAS  Article  Google Scholar 

  48. 48.

    Siegrist H. Calcium gluconate solutions for injection with addition of calcium laevulinate and calcium d-saccharate. Pharm. Acta Helv. 24: 430–441 (1949)

    Google Scholar 

  49. 49.

    van Driessche AES, Benning LG, Rodriguez-Blanco JD, Ossorio M, Bats P, Garcia-Ruiz JM. The role and implications of bassanite as a stable precursor phase to gypsum precipitation. Science 336: 69–72 (2012)

    Article  Google Scholar 

  50. 50.

    Wallander ML, Leibold EA, Eisenstein RS. Molecular control of vertebrate iron homeostatis by regulatory proteins. Biochim. Biophys. Acta 1763: 668–689 (2006)

    CAS  Article  Google Scholar 

  51. 51.

    Heath KM, Axton JH, McCullough JM, Harris N. The evolutionary adaption of the C2824 mutation to culture and climate during the european neolithic. Am. J. Phys. Anthropol. 160: 86–101 (2016)

    Article  Google Scholar 

  52. 52.

    Ramos A, Cabrera MC, Saadoun A. Bioaccessibility of Se, Cu, Zn, Mn, and Fe, and heme iron content in unaged and aged meat of Hereford and Braford steers fed pasture. Meat Sci. 91: 116–124 (2012)

    CAS  Article  Google Scholar 

  53. 53.

    Bæch SB, Hansen M, Bukhave K, Kristensen L, Jensen M, Sørensen SS, Purslow PP, Skibsted LH, Sandström B. Increased cooking temperature of meat has no negative effect on the non-heme iron absorption from a phytate rich meal in man. J. Nutr. 133: 94–97 (2003)

    Google Scholar 

  54. 54.

    Bæch SB. The effect of meat and meat protein fractions on non-heme iron absorption in humans. PhD thesis, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark (2002)

    Google Scholar 

  55. 55.

    Ganz T. Hepcidin in iron metabolism. Curr. Opin Hematol. 11: 251–254 (2004)

    CAS  Article  Google Scholar 

  56. 56.

    Carlsen CU, Rasmussen KT, Kjeldsen KK, Westergaard P, Skibsted LH. Pro-and antioxidativity of protein fractions from pork (longissimus dorsi). Eur. Food Res Technol. 217: 195–200 (2003)

    CAS  Article  Google Scholar 

  57. 57.

    Carlsen CU, Skibsted LH. Myoglobin species with enhanced prooxidative activity is formed during mild proteolysis by pepsin. J. Agr. Food Chem. 52: 1675–1681 (2004)

    CAS  Article  Google Scholar 

  58. 58.

    Libardi SH, Skibsted LH, Cardoso DR. Oxidation of carbon monoxide by perferrylmyoglobin. J. Agr. Food Chem. 62: 1950–1955 (2014)

    CAS  Article  Google Scholar 

  59. 59.

    Huvaere, K, Skibsted LH. Light induced oxidation of tryptophan and histidine. Reactivity of aromatic N-heterocycles toward triplet-excited flavins. J. Am. Chem. Soc. 131: 8049–8060 (2009)

    CAS  Google Scholar 

  60. 60.

    Carlsen CU, Andersen ML, Skibsted LH. Oxidative stability of processed pork. Assay based on ESR-detection of radicals. Eur. Food Res. Technol. 213: 170–173 (2001)

    CAS  Google Scholar 

  61. 61.

    Lönnerdal B. Calcium and iron absorption. Mechanism and public health concerns. Int. J. Vitam. Nutr. Res. 80: 293–299 (2010)

    Article  Google Scholar 

  62. 62.

    Shawki A, Mackenzie B. Interaction of calcium with the human divalent metalion transporter. Biochem. Bioph. Res. Co. 393: 471–475 (2010)

    CAS  Article  Google Scholar 

  63. 63.

    Jørgensen LV, Andersen HJ, Skibsted LH. Kinetic of reduction of hypervalent iron in myoglobin by crocin in aqueous solution. Free Radical Res. 27: 73–87 (1997)

    Article  Google Scholar 

  64. 64.

    Jørgensen LV, Skibsted LH. Flavonoid deactivation of ferrylmyoglobin in relation to ease of oxidation as determined by cyclic voltammetry. Free Radical Res. 28: 335–351 (1998)

    Article  Google Scholar 

  65. 65.

    Libardi SH, Pindstrup H, Amigo JM, Cardoso DR, Skibsted LH. Reduction of ferrylmyoglobin by cysteine as affected by pH. RSC Adv. 4: 60953–60958 (2014)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leif Horsfelt Skibsted.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Skibsted, L.H. Mineral nutrient interaction: Improving bioavailability of calcium and iron. Food Sci Biotechnol 25, 1233–1241 (2016). https://doi.org/10.1007/s10068-016-0196-2

Download citation

Keywords

  • mineral bioavailability
  • nutrient interaction
  • spontaneous calcium salt supersaturation
  • iron bioavailability/prooxidative balance