Skip to main content
Log in

Role of phage-antibiotic combination in reducing antibiotic resistance in Staphylococcus aureus

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study was designed to evaluate the effect of phage-antibiotic synergy in reducing antibiotic resistance. The initial numbers of Staphylococcus aureus treated with ciprofloxacin, phages, and combination were significantly reduced by 3.47, 4.62, and 5.75 log CFU/mL, respectively, at the early 12 h of incubation. The combination treatment most effectively inhibited the growth of S. aureus, showing more than 4 log reduction in 18 h of incubation at 37°C. The significant reduction in biofilm formation by S. aureus was observed at the combination treatment (3.91 log). Ciprofloxacin-treated S. aureus cells became resistant to both ciprofloxacin and phage, showing the mutant frequencies of 27% and 25%, respectively, whereas no antibiotic- and phage-resistant S. aureus cells were observed at the combined treatment of ciprofloxacin and phages. These results provide useful information for reducing the risk of antibiotic resistance in human and food animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sergelidis D, Papadopoulos T, Komodromos D, Sergelidou E, Lazou T, Papagianni M, Zdragas A, Papa A. Isolation of methicillin-resistant Staphylococcus aureus from small ruminants and their meat at slaughter and retail level in Greece. Lett. Appl. Microbiol. 61: 498–503 (2015)

    Article  CAS  Google Scholar 

  2. Hanberger H, Walther S, Leone M, Barie PS, Rello J, Lipman J, Marshall JC, Anzueto A, Sakr Y, Pickkers P, Felleiter P, Engoren M, Vincent J-L. Increased mortality associated with meticillin-resistant Staphylococcus aureus (MRSA) inf ection in t he I ntensive C are Unit: R esults from the EPIC I I study. Int. J. Antimicrob. Ag. 38: 331–335 (2011)

    Article  CAS  Google Scholar 

  3. Haaber J, Cohn MT, Frees D, Andersen TJ, Ingmer H. Planktonic aggregates of Staphylococcus aureus protect against common antibiotics. PLoS ONE 7: e41075 (2012)

    Article  Google Scholar 

  4. Penesyan A, Gillings M, Paulsen I. Antibiotic discovery: Combatting bacterial resistance in cells and in biofilm communities. Molecules 20: 5286–5298 (2015)

    Article  CAS  Google Scholar 

  5. Hede K. Antibiotic resistance: An infectious arms race. Nature 509: S2–S3 (2014)

    Article  Google Scholar 

  6. Kirby AE. Synergistic action of gentamicin and bacteriophage in a continuous culture population of Staphylococcus aureus. PLoS ONE 7: e51017 (2012)

    Article  Google Scholar 

  7. Woo J, Ahn J. Assessment of synergistic combination potential of probiotic and bacteriophage against antibiotic-resistant Staphylococcus aureus exposed to simulated intestinal conditions. Arch. Microbiol. 196: 719–727 (2014)

    Article  CAS  Google Scholar 

  8. Coulter L, McLean R, Rohde R, Aron G. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms. Viruses 6: 3778–3786 (2014)

    Article  CAS  Google Scholar 

  9. Qimron U, Marintcheva B, Tabor S, Richardson CC. Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. P. Natl. Acad. Sci. USA 103: 19039–19044 (2006)

    Article  CAS  Google Scholar 

  10. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat. Rev. Microbiol. 8: 317–327 (2010)

    Article  CAS  Google Scholar 

  11. Partridge SR. Analysis of antibiotic resistance regions in Gram-negative bacteria. FEMS Microbiol. Rev. 35: 820–855 (2011)

    Article  CAS  Google Scholar 

  12. CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. Approved standard M07-A8 (2009)

    Google Scholar 

  13. Freeman DJ, Falkiner FR, Keane CT. New method for detecting slime production by coagulase negative staphylococci. J. Clin. Pathol. 42: 872–874 (1989)

    Article  CAS  Google Scholar 

  14. Comeau AM, Tétart F, Trojet SN, Prère M-F, Krisch HM. Phage-antibiotic synergy (PAS): ß-Lactam and quinolone antibiotics stimulate virulent phage growth. PLoS ONE 2: e799 (2007)

    Article  Google Scholar 

  15. Tanji Y, Shimada T, Yoichi M, Miyanaga K, Hori K, Unno H. Toward rational control of Escherichia coli O157:H7 by a phage cocktail. Appl. Microbiol. Biot. 64: 270–274 (2004)

    Article  CAS  Google Scholar 

  16. Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O. Antibiotic resistance of bacterial biofilms. Int. J. Antimicrob. Ag. 35: 322–332 (2010)

    Article  Google Scholar 

  17. Ahn J, Kim S, Jung L-S, Biswas D. In vitro assessment of the susceptibility of planktonic and attached cells of foodborne pathogens to bacteriophage P22-mediated Salmonella lysates. J. Food Protect. 76: 2057–2062 (2013)

    Article  Google Scholar 

  18. Ryan EM, Alkawareek MY, Donnelly RF, Gilmore BF. Synergistic phageantibiotic combinations for the control of Escherichia coli biofilms in vitro. FEMS Immunol. Med. Mic. 65: 395–398 (2012)

    Article  CAS  Google Scholar 

  19. Pourmand MR, Abdossamadi Z, Salari MH, Hosseini M. Slime layer formation and the prevalence of mecA and aap genes in Staphylococcus epidermidis isolates. J. Infect. Dev. Ctries. 5: 34–40 (2011)

    Article  CAS  Google Scholar 

  20. Stewart PS, William CJ. Antibiotic resistance of bacteria in biofilms. The Lancet 358: 135–138 (2001)

    Article  CAS  Google Scholar 

  21. Fung-Tomc J, Kolek B, Bonner DP. Ciprofloxacin-induced, low-level resistance to structurally unrelated antibiotics in Pseudomonas aeruginosa and methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Ch. 37: 1289–1296 (1993)

    Article  CAS  Google Scholar 

  22. Campion JJ, McNamara PJ, Evans ME. Evolution of ciprofloxacin-resistant Staphylococcus aureus in in vitro pharmacokinetic environments. Antimicrob. Agents. Ch. 48: 4733–4744 (2004)

    Article  CAS  Google Scholar 

  23. Mizoguchi K, Morita M, Fischer CR, Yoichi M, Tanji Y, Unno H. Coevolution of bacteriophage PP01 and Escherichia coli O157:H7 in continuous culture. Appl. Environ. Microb. 69: 170–176 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juhee Ahn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, A., Kim, J., Ding, T. et al. Role of phage-antibiotic combination in reducing antibiotic resistance in Staphylococcus aureus . Food Sci Biotechnol 25, 1211–1215 (2016). https://doi.org/10.1007/s10068-016-0192-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0192-6

Keywords

Navigation