Skip to main content
Log in

Optimization of roasting conditions through antioxidant and anti-inflammatory activities of Yak-kong (Rhynchosia nulubilis)

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of roasting conditions on the antioxidant activities and anti-inflammatory activities of roasted yak-kong were investigated using a second-order central composite design. The optimum conditions for DPPH radical scavenging ability (IC50), ABTS radical scavenging activity (IC50), total phenolic content (TPC), and oxygen radical absorbance capacity (ORAC) were at 111.47°C for 20.45 min, with the best values (DPPH, IC50; 2.143 mg/mL, ABTS, IC50; 1.775 mg/mL, TPC; 51.39mg tannic acid (TAE)/g, and ORAC; 6.89 μmoL trolox equivalents (TE)/g). The optimum conditions of nitric oxide (NO) production, prostaglandin E2 (PGE2) production, and tumor necrosis factor-α (TNF-α) were at 110.24°C for 21.18 min, yielding the best values (NO; 14.484 μM, PGE2; 3.433 mg/mL, and TNF-α; 3.818 ng/mL). Superimposed contour plots with regard to 7 variables indicated that the optimum roasting temperature and time were 110.88°C and 20.86 min. This result suggested that the optimally roasted yak-kong could replace coffee beans to provide potential bone health benefits to heavy coffee drinkers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen TF, Ravn P, Bagger YZ, Warming L, Christiansen C. Pulsed estrogen therapy in prevention of postmenopausal osteoporosis. A 2 year randomized, double blind, placebo controlled study. Osteoporos Int. 15: 168–174 (2004)

    CAS  Google Scholar 

  2. Garnero P, Sornay-Rendu E, Claustrat B, Delmas PD. Biochemical markers of bone turnover, endogenous hormones and the risk of fractures in postmenopausal women: The OFELY study. J. Bone Miner Res. 15: 1526–1536 (2000)

    Article  CAS  Google Scholar 

  3. Anderson JJ, Gamer SC. 1 Phytoestrogens and bone. Bailliere. Clin. Endoc. 12: 543–557 (1998)

    Article  CAS  Google Scholar 

  4. Stein GS, Lian JB, van Wijnen AJ, Montecino M. Transcriptional control of osteoblast growth and differentiation. Physiol. Rev. 76: 593–629 (1996)

    CAS  Google Scholar 

  5. Halliwell B. Antioxidant defense mechanisms: From the beginning to the end (of beginning). Free Radical Res. 31: 261–272 (1999)

    Article  CAS  Google Scholar 

  6. Hallstrom H, Wolk A, Glynn A, Michaelsson K. Coffee, tea and caffeine consumption in relation to osteoporotic fracture risk in a cohort of Swedish women. Osteoporosis Int. 17: 1055–1064 (2006)

    Article  CAS  Google Scholar 

  7. Liu H, Yao K, Zhang W, Zhou J, Wu T, He C. Coffee consumption and risk of fractures: A meta-analysis. Arch. Med. Sci. 8: 776–783 (2012)

    Article  Google Scholar 

  8. Prevention and management of osteoporosis. World Health Organ Tech. Rep. Ser. 921: 1–164 (2003)

    Google Scholar 

  9. Burge R, Dawson-Hughes B, Solomon DH, Wong JB, King A, Tosteson A. Incidence and economic burden of osteoporosis-related fractures in the United States, 2005-2025. J. Bone Miner. Res. 22: 465–475 (2007)

    Article  Google Scholar 

  10. Melton LJ. Who has osteoporosis? A conflict between clinical and public health perspectives. J. Bone Miner. Res. 15: 2309–2314 (2000)

    Article  Google Scholar 

  11. Gomez-Ruiz JA, Ames JM, Leake DS. Antioxidant activity and protective effects of green and dark coffee components against human low density lipoprotein oxidation. Eur. Food Res. Technol. 227: 1017–1024 (2008)

    Article  CAS  Google Scholar 

  12. Adlercreutz H, Mazur W. Phytoestrogens and western diseases. Ann. Med. 29: 95–120 (1997)

    Article  CAS  Google Scholar 

  13. Kuiper GG, Lemmen JG, Carlßson B, Corton JC, Safe SH, van der Saag PT, van der Burg B, Gustafsson JA. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor ß. Endocrinology 139: 4254–4263 (1998)

    Google Scholar 

  14. Zhang X, Shu XO, Li H, Yang G, Li Q, Gao YT, Zheng W. Prospective cohort study of soy food consumption and risk of bone fracture among postmenopausal women. Arch. Intern. Med. 165: 1890–1895 (2005)

    Article  Google Scholar 

  15. Kim AJ, Lee H, Ko HW, Ko SH, Woo N. Physiological activity of coffee beans and roasted black beans (Rhynchosia nulubilis) mixture extracts for coffee alternative beverage development. Korean. J. Food Nutr. 29: 178–185 (2016)

    Google Scholar 

  16. Levis S, Strickman-Stein N, Ganjei-Azar P, Xu P, Doerge DR, Krischer J. Soy isoflavones in the prevention of menopausal bone loss and menopausal symptoms: A randomized, double-blind trial. Arch. Intern. Med. 171: 1363–1369 (2011)

    Article  CAS  Google Scholar 

  17. Manolagas SC, Almeida M. Gone with the Wnts: ß-catenin, T-cell factor, forkhead box O, and oxidative stress in age-dependent diseases of bone, lipid, and glucose metabolism. Mol. Endocrinol. 21: 2605–2614 (2007)

    Article  CAS  Google Scholar 

  18. Ananarajah AP, Schwarz EM. Anti-RANKL therapy for inflammatory bone disorders. J. Cell Biochem. 97: 226–232 (2006)

    Article  Google Scholar 

  19. Kim HG, Kim GW, Oh H, Yoo SY, Kim YO, Oh MS. Influence of roasting on the antioxidant activity of small black soybean (Glycine max L. Merrill). LWT-Food Sci. Technol. 44: 992–998 (2011)

    Article  CAS  Google Scholar 

  20. Liyana-Pathirana C, Shahidi F. Optimization of extraction of phenolic compounds from wheat using response surface methodology. Food Chem. 93: 47–56 (2005)

    Article  CAS  Google Scholar 

  21. Youn SJ, Cho JG, Kwoon DJ, Choi UK, Kang SC. Determination of optimal conditions by response surface methodology and quality characteristics of water extract of Phellinus linteus. J. Appl. Biol. Chem. 49: 215–220 (2006)

    CAS  Google Scholar 

  22. Han HS, Park JH, Choi HJ, Sung TS, Woo HS, Choi C. Optimization of response surface methodology. J. Appl. Biol. Chem. 47: 96–106 (2004)

    CAS  Google Scholar 

  23. Blois MS. Antioxidant determination by the use of a stable free radical. Nature 181: 1198–1200 (1958)

    Article  Google Scholar 

  24. Jeong CH, Choi GN, Kim JH, Kwak JH, Heo HJ, Shim KH, Cho BR, Bae YI, Choi JS. In vitro antioxidative activities and phenolic composition of hot water extract from different parts of Cudrania tricuspidata. Prev. Nutr. Food Sci. 14: 283–289 (2009)

    CAS  Google Scholar 

  25. Materska M, Perucka I. Antioxidant activity of the main phenolic compounds isolated form hot pepper fruit (Capsicum annuum L.). J. Agr. Food Chem. 53: 1750–1756 (2005)

    Article  CAS  Google Scholar 

  26. Huang D, Ou B, Hampsch-Woodill M, Flanagan JA, Deemer EK. Development and validation of oxygen radical absorbance capacity assay for lipophilic antioxidants using randomly methylated beta-cyclodextrin as the solubility enhancer. J. Agr. Food Chem. 50: 1815–1821 (2002)

    Article  CAS  Google Scholar 

  27. Atkinson AC, Doney AN. Optimum experimental design. Oxford University Press, Oxford, UK. pp. 10–90 (1992)

    Google Scholar 

  28. Wolfenden BS, Willson RL. Radical-cations as reference chromogens in kinetic studies of one-electron transfer reactions: Pulse radiolysis studies of 2,29-azinobis-(3-ethylbenzthiazoline-6-sulphonate). J. Chem. Soc. Perk. T. 2: 805–812 (1982)

    Article  Google Scholar 

  29. Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 20: 933–956 (1996)

    Article  CAS  Google Scholar 

  30. Salah N, Miller NJ, Paganga G, Tijburg L, Bolwell GP, Rice-Evans CA. Polyphenolic flavonols as scavengers of aqueous phase radicals and as chainbreaking antioxidants. Arch. Biochem. Biophys. 322: 339–346 (1995)

    Article  CAS  Google Scholar 

  31. de Gaulejac NSC, Glories Y, Vivas N. Free radical scavenging effect of anthocyanins in red wines. Food Res Int. 32: 327–333 (1999)

    Article  Google Scholar 

  32. Wu C, Duckett SK, Neel JP, Fontenot JP, Clapham WM. Influence of finishing systems on hydrophilic and lipophilic oxygen radical absorbance capacity (ORAC) in beef. Meat. Sci. 80: 662–667 (2008)

    Article  CAS  Google Scholar 

  33. Dudonne’ S, Vitrac X, Coutiere P, Woillez M, Merillon, JM. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agr. Food Chem. 57: 1768–1774 (2009)

    Article  Google Scholar 

  34. Stichtenoth DO, Frolich JC. Nitric oxide and inflammatory joint diseases. Brit. J. Rheumatol. 37: 246–257 (1998)

    Article  CAS  Google Scholar 

  35. Ryh JH, Lee HJ, Jeong YS, Ryu SY, Han TN. Yomogin, an inhibitor of nitic oxide production in LPS-activated macrophage. Arch. Pharm. Res. 21: 481–484 (1998)

    Article  Google Scholar 

  36. Sadowska-Krowicka H, Mannick EE, Oliver PD, Sandoval M, Zhang XJ, Eloby-Chiles S, Clark DA, Miller MJS. Gensirein and gut inflammation: Role of nitric oxide. P. Soc. Exp. Biol. Med. 217: 351–357 (1998)

    Article  CAS  Google Scholar 

  37. Murata T, Ushikubi F, Matsuoka T, Hirata M, Yamasaki A, Sugimoto Y, Ichikawa A, Aze Y, Tanaka T, Yoshida N, Ueno A, Oh-ishi S, Narumiya S. A ltered p ain perception and inflammatory response in mice lacking prostacyclin receptor. Nature 388: 678–682 (1997)

    Article  CAS  Google Scholar 

  38. Moller DE. Potential role of TNF-a in the pathogenesis of insulin resistance and type 2 diabetes. Trends Endocrin. Met. 11: 212–217 (2000)

    Article  CAS  Google Scholar 

  39. Lee DR, Lee J, Rota M, Lee J, Ahn HS, Park SM, Shin D. Coffee consumption and risk of fractures: A systematic review and dose-response meta-analysis. Bone 63: 20–28 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ae-Jung Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, AJ. Optimization of roasting conditions through antioxidant and anti-inflammatory activities of Yak-kong (Rhynchosia nulubilis). Food Sci Biotechnol 25, 1175–1182 (2016). https://doi.org/10.1007/s10068-016-0187-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0187-3

Keywords

Navigation