Skip to main content
Log in

Phosphoproteomic profiling of myofibrillar and sarcoplasmic proteins of muscle in response to salting

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A phosphoproteomic profile of myofibrillar and sarcoplasmic proteins of muscle in response to salting was investigated. Myofibrillar and sarcoplasmic proteins extracted from salted meat with 0, 1, 2, 3, 4, and 5% salt for 0, 2, 4, 6, 8, and 16 h were analyzed by SDS-PAGE electrophoresis and fluorescence staining. The global phosphorylation of myofibrillar proteins in salted meat was lower than that in control muscle at 16 h of salting (p<0.05), and the global phosphorylation of myofibrillar proteins in 3% salt-treated group at 16 h was the lowest. However, salting showed no significant effect on phosphorylation of sarcoplasmic proteins. Four categories of phosphorylated protein were identified by LC-MS/MS, involved in stress response (heat shock protein), glycometabolism (glycogen phosphorylase, glyceraldehyde-3-phosphate dehydrogenase), oxidation or reduction (superoxide dismutase), and others (myoglobin), the phosphorylation of which was affected by salting. Thus, salting may influence meat quality through protein phosphorylation, which regulates protein degradation and glycolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barat JM, Baigts D, Aliño M, Fernández FJ, Pérez-García VM. Kinetics studies during NaCl and KCl pork meat brining. J. Food Eng. 106: 102–110 (2011)

    Article  CAS  Google Scholar 

  2. Binkerd EF, Kolari OE. The history and use of nitrate and nitrite in the curing of meat. Food Cosmet. Toxicol. 13: 655–716 (1975)

    Article  CAS  Google Scholar 

  3. Olesen PT, Meyer AS, Stahnke LH. Generation of flavour compounds in fermented sausages-the influence of curing ingredients, Staphylococcus starter culture and ripening time. Meat Sci. 66: 675–687 (2004)

    Article  CAS  Google Scholar 

  4. Comaposada J, Gou P, Arnau J. The effect of sodium chloride content and temperature on pork meat isotherms. Meat Sci. 55: 291–295 (2000)

    Article  CAS  Google Scholar 

  5. Thorarinsdottir KA, Arason S, Sigurgisladottir S, Gunnlaugsson VN, Johannsdottir J, Tornberg E. The effects of salt-curing and salting procedures on the microstructure of cod (Gadus morhua) muscle. Food Chem. 126: 109–115 (2011)

    Article  CAS  Google Scholar 

  6. Bombrun L, Gatellier P, Carlier M, Kondjoyan A. The effects of low salt concentrations on the mechanism of adhesion between two pieces of pork semimembranosus muscle following tumbling and cooking. Meat Sci. 96: 5–13 (2014)

    Article  CAS  Google Scholar 

  7. Cherroud S, Cachaldora A, Fonseca S, Laglaoui A, Carballo J, Franco I. Microbiological and physicochemical characterization of dry-cured Halal goat meat. Effect of salting time and addition of olive oil and paprika covering. Meat Sci. 98: 129–134 (2014)

    CAS  Google Scholar 

  8. Han G, Ye M, Zou H. Development of phosphopeptide enrichment techniques for phosphoproteome analysis. Analyst 133: 1128–1138 (2008)

    Article  CAS  Google Scholar 

  9. Chen L, Li X, Ni N, Liu Y, Chen L, Wang Z, Shen QW, Zhang D. Phosphorylation of myofibrillar proteins in post-mortem ovine muscle with different tenderness. J. Sci. Food Agr. 96: 1474–1483 (2015)

    Article  Google Scholar 

  10. Nishi H, Shaytan A, Panchenko AR. Physicochemical mechanisms of protein regulation by phosphorylation. Front. Genet. 5: 270 (2014)

    Article  Google Scholar 

  11. Di Lisa F, De Tullio R, Salamino F, Barbato R, Melloni E, Siliprandi N, Schiaffino S, Pontremoli S. Specific degradation of troponin T and I by mu-calpain and its modulation by substrate phosphorylation. Biochem. J. 308: 57–61 (1995)

    Article  Google Scholar 

  12. Toyo-oka T. Phosphorylation with cyclic adenosine 3:5 monophosphatedependent protein kinase renders bovine cardiac troponin sensitive to the degradation by calcium-activated neutral protease. Biochem. Bioph. Res. Co. 107: 44–50 (1982)

    Article  CAS  Google Scholar 

  13. Huang H, Larsen MR, Lametsch R. Changes in phosphorylation of myofibrillar proteins during postmortem development of porcine muscle. Food Chem. 134: 1999–2006 (2012)

    Article  CAS  Google Scholar 

  14. Huang H, Larsen MR, Karlsson AH, Pomponio L, Costa LN, Lametsch R. Gelbased phosphoproteomics analysis of sarcoplasmic proteins in postmortem porcine muscle with pH decline rate and time differences. Proteomics 11: 4063–4076 (2011)

    Article  CAS  Google Scholar 

  15. Zhi G, Ryder JW, Huang J, Ding P, Chen Y, Zhao Y, Kamm KE, Stull JT. Myosin light chain kinase and myosin phosphorylation effect frequency-dependent potentiation of skeletal muscle contraction. P. Natl. Acad. Sci. USA 102: 17519–17524 (2005)

    Article  CAS  Google Scholar 

  16. Stull JT, Kamm KE, Vandenboom R. Myosin light chain kinase and the role of myosin light chain phosphorylation in skeletal muscle. Arch. Biochem. Biophys. 510: 120–128 (2011)

    Article  CAS  Google Scholar 

  17. Li C, Zhou G, Xu X, Lundström K, Karlsson A, Lametsch R. Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in bovine longissimus muscle in response to postmortem electrical stimulation. Food Chem. 175: 197–202 (2015)

    Article  CAS  Google Scholar 

  18. Hu Y, Guo S, Li X, Ren X. Comparative analysis of salt-responsive phosphoproteins in maize leaves using Ti(4+)—IMAC enrichment and ESI-Q-TOF MS. Electrophoresis 34: 485–492 (2013)

    Article  Google Scholar 

  19. Zeniya M, Sohara E, Kita S, Iwamoto T, Susa K, Mori T, Oi K, Chiga M, Takahashi D, Yang SS, Lin SH, Rai T, Sasaki S, Uchida S. Dietary salt intake regulates WNK3-SPAK-NKCC1 phosphorylation cascade in mouse aorta through angiotensin II. Hypertension 62: 872–878 (2013)

    Article  CAS  Google Scholar 

  20. Chiga M, Rai T, Yang SS, Ohta A, Takizawa T, Sasaki S, Uchida S. Dietary salt regulates the phosphorylation of OSR1/SPAK kinases and the sodium chloride cotransporter through aldosterone. Kidney Int. 74: 1403–1409 (2008)

    Article  CAS  Google Scholar 

  21. Lametsch R, Kristensen L, Larsen MR, Therkildsen M, Oksbjerg N, Ertbjerg P. Changes in the muscle proteome after compensatory growth in pigs. J. Anim. Sci. 84: 918–924 (2006)

    Article  CAS  Google Scholar 

  22. Schulenberg B, Aggeler R, Beechem JM, Capaldi RA, Patton WF. Analysis of steady-state protein phosphorylation in mitochondria using a novel fluorescent phosphosensor dye. J. Biol. Chem. 278: 27251–27255 (2003)

    Article  CAS  Google Scholar 

  23. Mora-Gallego H, Guardia MD, Serra X, Gou P, Arnau J. Sensory characterisation and consumer acceptability of potassium chloride and sunflower oil addition in small-caliber non-acid fermented sausages with a reduced content of sodium chloride and fat. Meat Sci. 112: 9–15 (2015)

    Article  Google Scholar 

  24. Sheard PR, Tali A. Injection of salt, tripolyphosphate and bicarbonate marinade solutions to improve the yield and tenderness of cooked pork loin. Meat Sci. 68: 305–311 (2004)

    Article  CAS  Google Scholar 

  25. D’Alessandro A, Rinalducci S, Marrocco C, Zolla V, Napolitano F, Zolla L. Love me tender: An omics window on the bovine meat tenderness network. J. Proteomics 75: 4360–4380 (2012)

    Article  Google Scholar 

  26. Zhang Z, Lawrence J, Stracher A. Phosphorylation of platelet actin binding protein protects against proteolysis by calcium dependent sulfhydryl protease. Biochem. Bioph. Res. Co. 151: 355–360 (1988)

    Article  CAS  Google Scholar 

  27. Silverman-Gavrila LB, Lu TZ, Prashad RC, Nejatbakhsh N, Charlton MP, Feng ZP. Neural phosphoproteomics of a chronic hypoxia model—Lymnaea stagnalis. Neuroscience 161: 621–634 (2009)

    Article  CAS  Google Scholar 

  28. Donnelly RP, Finlay DK. Glucose, glycolysis and lymphocyte responses. Mol. Immunol. 68: 513–519 (2015)

    Article  CAS  Google Scholar 

  29. Sale EM, White MF, Kahn CR. Phosphorylation of glycolytic and gluconeogenic enzymes by the insulin receptor kinase. J. Cell. Biochem. 33: 15–26 (1987)

    Article  CAS  Google Scholar 

  30. Muller MS, Pedersen SE, Walls AB, Waagepetersen HS, Bak LK. Isoformselective regulation of glycogen phosphorylase by energy deprivation and phosphorylation in astrocytes. Glia 63: 154–162 (2015)

    Article  Google Scholar 

  31. Bell RAV, Storey KB. P06: Posttranslational modification of glyceraldehyde-3-phosphate dehydrogenase from a hibernating mammal: Insight into coldadaptation and structural diversity of a housekeeping enzyme. Cryobiology 69: 196–197 (2014)

    Article  Google Scholar 

  32. Gonzalez B, Manso R. Induction, modification and accumulation of HSP70s in the rat liver after acute exercise: Early and late responses. J. Physiol.-London 556: 369–385 (2004)

    Article  CAS  Google Scholar 

  33. Melling CW, Thorp DB, Milne KJ, Noble EG. Myocardial Hsp70 phosphorylation and PKC-mediated cardioprotection following exercise. Cell Stress Chaperon. 14: 141–150 (2009)

    Article  CAS  Google Scholar 

  34. Carvalho ME, Gasparin G, Poleti MD, Rosa AF, Balieiro JC, Labate CA, Nassu RT, Tullio RR, Regitano LC, Mourao GB, Coutinho LL. Heat shock and structural proteins associated with meat tenderness in Nellore beef cattle, a Bos indicus breed. Meat Sci. 96: 1318–1324 (2014)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dequan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Wang, Z., Li, Z. et al. Phosphoproteomic profiling of myofibrillar and sarcoplasmic proteins of muscle in response to salting. Food Sci Biotechnol 25, 993–1001 (2016). https://doi.org/10.1007/s10068-016-0161-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0161-0

Keywords

Navigation