Skip to main content
Log in

Monascus-mediated fermentation improves the nutricosmetic potentials of soybeans

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The potential nutricosmetic activities and compositional changes of 80% ethanol extracts of white soybean (MFWS) and black soybean (MFBS) fermented with Monascus pilosus KCCM 60084 at 30°C for 30 days were investigated. Monascus-fermented soybean extracts (MFSEs) showed stronger nutricosmetic potentials in terms of antioxidant as well as tyrosinase and elastase inhibitory activities compared to those of unfermented soybean extracts (p<0.05). Extracts (50mg/mL) from MFBS inhibited the α-melanocyte stimulating hormone (α-MSH)-induced melanogenesis in B16F10 cells more potently than arbutin. HPLC/MS analysis demonstrated that aglycone isoflavones and coenzyme Q10 (CoQ10) levels increased about 33.4- and 3.0-fold in the MFSEs after 20 days of fermentation, respectively. A linear correlation (r 2=0.67 to 0.99) between nutricosmetic activity and concentrations of CoQ10, genistein, and daidzein, which are commonly associated with nutraceutical effects, was observed. Results indicate that Monascus-mediated fermentation can be an efficient strategy to improve nutricosmetic functionality of soybeans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Royer M, Prado M, Diouf PN, Stevanovic T. Study of nutricosmetics and cosmeceutical potentials of polyphenolic bark extracts from Canadian forest species. PharmaNutri 1: 158–167 (2013)

    Article  CAS  Google Scholar 

  2. Preetha JP, Karthika K. Cosmeceuticals-An Evolution. Int. J. ChemTech Res. 1: 1217–1223 (2009)

    Google Scholar 

  3. Lorencini M, Brohem CA, Zanchin NIT, Maibach HI. Active ingredients against human epidermal aging. Ageing Res. Rev. 15: 100–115 (2014)

    Article  CAS  Google Scholar 

  4. Kohl E, Steinbauer J, Landthaler M, Szeimies RM. Skin ageing. J. Eur. Acad. Dermatol. 25: 873–875 (2011)

    Article  CAS  Google Scholar 

  5. James AEK, Timothy DW, Gordon L. Inhibition of human leukocyte and porcine pancreatic elastase by homologues of bovine pancreatic trypsin inhibitor. Biochemistry 35: 9090–9096 (1996)

    Article  Google Scholar 

  6. Cabanes J, Chazarra S, Garcia-Carmona F. Kojic acid, a cosmetic skin whitening agent, is a slow-binding inhibitor of catecholase activity of tyrosinase. J. Pharm. Pharmacol. 46: 982–985 (1994)

    Article  CAS  Google Scholar 

  7. Prota G. The chemistry of melanins and melanogenesis. Prog. Chem. Org. Nat. Prod. 64: 93–148 (1995)

    CAS  Google Scholar 

  8. Wu LC, Chen YC, Ho JA, Yang CS. Inhibitory effect of Red kojic ex tracts on mushroom tyrosinase. J. Agr. Food Chem. 51: 4240–4246 (2003)

    Article  CAS  Google Scholar 

  9. Data D, Salisbury F. The internal and external use of medicinal plants. Clin. Dermatol. 27: 148–158 (2009)

    Article  Google Scholar 

  10. Xiao CW. Health effects of soy protein and isoflavones in humans. J. Nutr. 138: 1244S–1249S (2008)

    CAS  Google Scholar 

  11. Zhao R, Bruning E, Rossetti D, Starcher B, Seiberg M, Iotsova-Stone V. Extracts from Glycine max (soybean) induce elastin synthesis and inhibit elastase activity. Exp. Dermatol. 18: 883–886 (2009)

    Article  CAS  Google Scholar 

  12. James L, Warren W. The mechanism of action and clinical benefits of soy for the treatment of hyperpigmentation. Int. J. Dermatol. 50: 470–477 (2011)

    Article  Google Scholar 

  13. Tsangalis D, Ashton JE, Mcgill AEJ, Shah NP. Enzymic transformation of isoflavone phytoestrogens in soymilk by ß-glucosidase-producing bifidobacteria. J. Food Sci. 67: 3104–3113 (2002)

    Article  CAS  Google Scholar 

  14. Pyo YH, Lee TC, Lee YC. Enrichment of bioactive isoflavones in soymilk fermented with ß-glucosidase-producing lactic acid bacteria. Food Res. Int. 38: 551–559 (2005)

    Article  CAS  Google Scholar 

  15. Endo A. Monacolin K, a new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. 32: 852–854 (1979)

    Article  CAS  Google Scholar 

  16. Hsu LC, Liang YH, Hsu YW, Kuo YH, Pan TM. Anti-inflammatory properties of yellow and orange pigments from Monascus purpureus NTU 568. J. Agr. Food Chem. 61: 2796–2802 (2013)

    Article  CAS  Google Scholar 

  17. Pyo YH, Seo SY. Simultaneous production of natural statins and coenzyme Q10 by Monascus pilosus fermentation using different solid substrates. Food Sci. Biotechnol. 19: 1635–1641 (2010)

    Article  CAS  Google Scholar 

  18. Zhang M, Dang L, Guo F, Wang X, Zhao W, Zhao R. Coenzyme Q10 enhances dermal elastin expression, inhibits IL-1a production and melanin synthesis in vitro. Int. J. Cosmetic. Sci. 34: 273–279 (2012)

    Article  Google Scholar 

  19. Brand-Williams W, Cuvelie ME, Berset C. Use of free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 28: 25–30 (1995)

    Article  CAS  Google Scholar 

  20. Benzie IF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “Antioxidant power”: The FRAP Assay. Anal. Biochem. 239: 70–76 (1996)

    Article  CAS  Google Scholar 

  21. Singleton VL, Rossi JA. Colorimetry of total phenolics with phosphomolibdicphosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158 (1965)

    CAS  Google Scholar 

  22. Ndolo VU, Beta T. Distribution of carotenoids in endosperm, germ, and aleurone fractions of cereal grain kernels. Food Chem. 139: 663–671 (2013)

    Article  CAS  Google Scholar 

  23. Sun B, Ricardo-da- Silva JM, Spranger I. Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agr. Food Chem. 46: 4267–4274 (1998)

    Article  CAS  Google Scholar 

  24. Kumar V, Rani A, Dixit AK, Pratap D, Bhatnagar D. A comparative assessment of total phenolic content, ferric reducing-anti-oxidative power, free radical scavenging activity, vitamin C and isoflavones content in soybean with varying seed coat colour. Food Res. Int. 43: 323–328 (2010)

    Article  CAS  Google Scholar 

  25. Mosmann T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods 65: 55–63 (1983)

    Article  CAS  Google Scholar 

  26. Hosoi J, Abe E, Suda T, Kuroki T. Regulation of melanin synthesis of B16 mouse melanoma cells by 1a, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45: 1474–1478 (1985)

    CAS  Google Scholar 

  27. Lim JY, Kim JJ, Lee DS, Shim JY, Imm JY. Physicochemical characteristics and production of whole soymilk from Monascus fermented soybeans. Food Chem. 120: 255–260 (2010)

    Article  CAS  Google Scholar 

  28. Xu B, Chang SKC. Antioxidant capacity of seed coat, dehulled bean, and whole black soybeans in relation to their distributions of total phenolics, phenolic acids, anthocyanins, and isoflavone. J. Agr. Food Chem. 56: 8365–8373 (2008)

    Article  CAS  Google Scholar 

  29. Anunciato TP, Rocha Filho PA. Carotenoids and polyphenols in nutricosmetics, nutraceuticals, and cosmeceuticals. J. Cosmet. Dermatol. 11: 51–54 (2012)

    Article  Google Scholar 

  30. Roadjanakamolson M, Suntornsuk. Production of ß-carotene enriched rice bran using solid state fermentation of Rhodotorula glutinous. J. Microbiol. Biotechn. 20: 525–531 (2010)

    CAS  Google Scholar 

  31. Anguelova T, Warthesen J. Degradation of lycopene, a-carotene, and ß-carotene during lipid peroxidation. J. Food Sci. 65:71–75 (2000)

    Article  CAS  Google Scholar 

  32. Takahata Y, Ohnishi-Kameyama M, Furuta S, Takahashi M, Suda I. Highly polymerized procyanidins in brown soybean seed coat with a high radicalscavenging activity. J. Agr. Food Chem. 49: 5843–5847 (2001)

    Article  CAS  Google Scholar 

  33. Briganti S, Picardo M. Antioxidant activity, lipid peroxidation and skin diseases. What’s new. J. Eur. Acad. Dermatol. 17: 663–669 (2003)

    Article  CAS  Google Scholar 

  34. Cluis CP, Burja AM, Martin VJ. Current prospects for the production of coenzyme Q10 in microbes. Trends Biotechnol. 25: 514–521 (2007)

    Article  CAS  Google Scholar 

  35. Hu Y, Ge C, Yuan W, Zhu R, Zhang W, Du L, Xue, J. Characterization of fermented black soybean natto inoculated with Bacillus natto during fermentation. J. Sci. Food Agr. 90: 1194–1202 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pyo, YH., Jin, YJ. Monascus-mediated fermentation improves the nutricosmetic potentials of soybeans. Food Sci Biotechnol 25, 883–891 (2016). https://doi.org/10.1007/s10068-016-0145-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0145-0

Keywords

Navigation