Skip to main content

Advertisement

Log in

Kombucha tea prevents obese mice from developing hepatic steatosis and liver damage

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Nonalcoholic fatty liver disease (NAFLD) is associated with the increased accumulation of hepatocellular lipids. Although Kombucha tea (KT) has emerged as a substance protecting the liver from damage, the effects of KT in NAFLD remain unclear. Hence, we investigated whether KT influenced hepatic steatosis. Db/db mice were fed either control or methionine/choline-deficient (MCD) diets for 4 weeks. The MCD diet group was treated with KT or water for 3 weeks. KT treatment alleviated macrovesicular steatosis compared to the MCD-fed group. The levels of triglyceride, ALT, and AST also decreased in the KT+MCD-treated db/db mice. RNA expression in the MCD+KT group showed reduced triglyceride synthesis and uptake of fatty acids. Immunostaining and western blot assays for active caspase-3 demonstrated a lower level of apoptosis in the MCD+KT than in the MCD group. These results demonstrate that KT attenuated lipid accumulation and protected the liver from damage, promoting liver restoration in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Staels B, Rubenstrunk A, Noel B, Rigou G, Delataille P, Millatt LJ, Baron M, Lucas A, Tailleux A, Hum DW, Ratziu V, Cariou B, Hanf R. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/ nonalcoholic steatohepatitis. Hepatology 58: 1941–1952 (2013)

    Article  CAS  Google Scholar 

  2. Syn WK, Teaberry V, Choi SS, Diehl AM. Similarities and differences in the pathogenesis of alcoholic and nonalcoholic steatohepatitis. Semin. Liver Dis. 29: 200–210 (2009)

    Article  CAS  Google Scholar 

  3. Fon Tacer K, Rozman D. Nonalcoholic Fatty liver disease: Focus on lipoprotein and lipid deregulation. J. Lipids 2011: 783976 (2011)

    Article  Google Scholar 

  4. Tolman KG, Dalpiaz AS. Treatment of non-alcoholic fatty liver disease. Ther. Clin. Risk Manag. 3: 1153–1163 (2007)

    CAS  Google Scholar 

  5. Chitturi S. Treatment options for nonalcoholic fatty liver disease. Therap. Adv. Gastroenterol. 1: 173–189 (2008)

    Article  Google Scholar 

  6. Alkhouri N, Dixon LJ, Feldstein AE. Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev. Gastroenterol. Hepatol. 3: 445–451 (2009)

    Article  CAS  Google Scholar 

  7. Musso G, Gambino R, Cassader M. Recent insights into hepatic lipid metabolism in non-alcoholic fatty liver disease (NAFLD). Prog. Lipid Res. 48: 1–26 (2009)

    Article  CAS  Google Scholar 

  8. Greco D, Kotronen A, Westerbacka J, Puig O, Arkkila P, Kiviluoto T, Laitinen S, Kolak M, Fisher RM, Hamsten A, Auvinen P, Yki-Jarvinen H. Gene expression in human NAFLD. Am. J. Physiol. Gastrointest. Liver Physiol. 294: G1281–G1287 (2008)

    Article  CAS  Google Scholar 

  9. Dorn C, Riener MO, Kirovski G, Saugspier M, Steib K, Weiss TS, Gabele E, Kristiansen G, Hartmann A, Hellerbrand C. Expression of fatty acid synthase in nonalcoholic fatty liver disease. Int. J. Clin. Exp. Pathol. 3: 505–514 (2010)

    CAS  Google Scholar 

  10. Dufresne C, Farnworth E. Tea, Kombucha, and health: A review. Food Res. Int. 33: 409–421 (2000)

    Article  CAS  Google Scholar 

  11. Bhattacharya S, Gachhui R, Sil PC. Effect of Kombucha, a fermented black tea in attenuating oxidative stress mediated tissue damage in alloxan induced diabetic rats. Food Chem. Toxicol. 60: 328–340 (2013)

    Article  CAS  Google Scholar 

  12. Chen C, Liu B. Changes in major components of tea fungus metabolites during prolonged fermentation. J. Appl. Microbiol. 89: 834–839 (2000)

    Article  CAS  Google Scholar 

  13. Ponmurugan P, Muthumani T, Jayabalan R, Swaminathan K. A comparative study on Kombucha tea and black tea. J. Plantation Crops 34: 688–693 (2006)

    Google Scholar 

  14. Bhattacharya S, Gachhui R, Sil PC. Hepatoprotective properties of Kombucha tea against TBHP-induced oxidative stress via suppression of mitochondria dependent apoptosis. Pathophysiology 18: 221–234 (2011)

    Article  Google Scholar 

  15. Greenwalt CJ, Ledford RA, Steinkraus KH. Determination and characterization of the antimicrobial activity of the fermented tea Kombucha. LWT-Food Sci. Technol. 31: 291–296 (1998)

    Article  CAS  Google Scholar 

  16. Srihari T, Karthikesan K, Ashokkumar N, Satyanarayana U. Antihyperglycaemic efficacy of kombucha in streptozotocin-induced rats. J. Funct. Foods 5: 1794–1802 (2013)

    Article  CAS  Google Scholar 

  17. Pauline T, Dipti P, Anju B, Kavimani S, Sharma SK, Kain AK, Sarada SK, Sairam M, Ilavazhagan G, Devendra K, Selvamurthy W. Studies on toxicity, anti-stress and hepato-protective properties of Kombucha tea. Biomed. Environ. Sci. 14: 207–213 (2001)

    CAS  Google Scholar 

  18. Murugesan GS, Sathishkumar M, Jayabalan R, Binupriya AR, Swaminathan K, Yun SE. Hepatoprotective and curative properties of Kombucha tea against carbon tetrachloride-induced toxicity. J. Microbiol. Biotechn. 19: 397–402 (2009)

    Article  CAS  Google Scholar 

  19. Sai Ram M, Anju B, Pauline T, Dipti P, Kain AK, Mongia SS, Sharma SK, Singh B, Singh R, Ilavazhagan G, Kumar D, Selvamurthy W. Effect of Kombucha tea on chromate (VI)-induced oxidative stress in albino rats. J. Ethnopharmacol. 71: 235–240 (2000)

    Article  CAS  Google Scholar 

  20. Jayabalan R, Malbaša RV, Lonèar ES, Vitas JS, Sathishkumar M. A review on Kombucha tea-microbiology, composition, fermentation, beneficial effects, toxicity, and tea fungus. Compr. Rev. Food Sci. F. 13: 538–550 (2014)

    Article  Google Scholar 

  21. Wang S, Lee Y, Kim J, Hyun J, Lee K, Kim Y, Jung Y. Potential role of hedgehog pathway in liver response to radiation. PLoS ONE 8: e74141 (2013)

    Article  Google Scholar 

  22. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK, Bhanot S, Monia BP, Li YX, Diehl AM. Inhibiting triglyceride synthesis improves hepatic steatosis but exacerbates liver damage and fibrosis in obese mice with nonalcoholic steatohepatitis. Hepatology 45: 1366–1374 (2007)

    Article  CAS  Google Scholar 

  23. Meissner M, Herrema H, van Dijk TH, Gerding A, Havinga R, Boer T, Müller M, Reijngoud D-J, Groen AK, Kuipers F. Bile acid sequestration reduces plasma glucose levels in db/db mice by increasing its metabolic clearance rate. PLoS ONE 6: e24564 (2011)

    Article  Google Scholar 

  24. Takahashi Y, Soejima Y, Fukusato T. Animal Models for Nonalcoholic fatty liver disease. Vol. I, pp. 61-69. In: Integrative Weight Management. Mullin GE, Cheskin LJ, Matarese LE (eds). Springer, New York, NY, USA (2014)

    Google Scholar 

  25. Witek RP, Stone WC, Karaca FG, Syn WK, Pereira TA, Agboola KM, Omenetti A, Jung Y, Teaberry V, Choi SS. Pancaspase inhibitor VX166 reduces fibrosis in an animal model of nonalcoholic steatohepatitis. Hepatology 50: 1421–1430 (2009)

    Article  CAS  Google Scholar 

  26. Xin H-G, Zhang B-B, Wu Z-Q, Hang X-F, Xu W-S, Ni W, Zhang R-Q, Miao X-H. Treatment with baicalein attenuates methionine choline deficient dietinduced non-alcoholic steatohepatitis in rats. Eur. J. Pharmacol. 738: 310–318 (2014)

    Article  CAS  Google Scholar 

  27. Nagaya T, Tanaka N, Suzuki T, Sano K, Horiuchi A, Komatsu M, Nakajima T, Nishizawa T, Joshita S, Umemura T. Down-regulation of SREBP-1c is associated with the development of burned-out NASH. J. Hepatol. 53: 724–731 (2010)

    Article  CAS  Google Scholar 

  28. Haque JA, McMahan RS, Campbell JS, Shimizu-Albergine M, Wilson AM, Botta D, Bammler TK, Beyer RP, Montine TJ, Yeh MM. Attenuated progression of diet-induced steatohepatitis in glutathione-deficient mice. Lab. Invest. 90: 1704–1717 (2010)

    Article  CAS  Google Scholar 

  29. Wang S, Hyun J, Youn B, Jung Y. Hedgehog signaling regulates the repair response in mouse liver damaged by irradiation. Radiat. Res. 179: 69–75 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngmi Jung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hyun, J., Lee, Y., Wang, S. et al. Kombucha tea prevents obese mice from developing hepatic steatosis and liver damage. Food Sci Biotechnol 25, 861–866 (2016). https://doi.org/10.1007/s10068-016-0142-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0142-3

Keywords

Navigation