Skip to main content
Log in

Comparative analysis of different bioactivities of Curcuma longa, Nigella sativa seeds, and Camellia sinensis extracted by four different methods: A green way to reduce oxidative stress

Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Medicinal use of plants is as old as human history. Curcuma longa, Nigella sativa seeds, and Camellia sinensis have been widely used in various remedies since ages. In this study, the effect of extraction method on different bioactivities and phytochemical constituents of Curcuma longa, Nigella sativa seeds, and Camellia sinensis were evaluated and compared using single solvent system (50% ethanol). Plant extracts were prepared by percolation-assisted extraction, sonication-assisted extraction, microwave-assisted extraction, and polyphenol extraction. Following phytochemical screening, extracts were screened for antioxidant activity, antihemolytic activity, osmotic tolerance, and osmotic fragility. All plant extracts showed good phytochemical content irrespective of extraction method. However, activities in vitro antioxidant assays were dependent on plant as well as on extraction methods. Promising results were observed for antihemolytic activity against hydrogen peroxide-treated erythrocytes. Overall, Camellia sinensis exhibited the highest bioactivities followed by Curcuma longa and Nigella sativa seeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Jun X, Deji S, Ye L, Rui Z. Comparison of in vitro antioxidant activities and bioactive components of green tea extracts by different extraction methods. Int. J. Pharm. 408: 97–101 (2011)

    Article  Google Scholar 

  2. Shabbir M, Khan MR, Saeed N. Assessment of phytochemicals, antioxidant, anti-lipid peroxidation and anti-hemolytic activity of extract and various fractions of maytenusroyleanus leaves. BMC Complem. Altern. M. 13: 143 (2013)

    Article  CAS  Google Scholar 

  3. Nabavi S, Abolhasani F, Moghaddam A, Eslami S. Cytoprotective effects of curcumin on sodium fluoride-induced intoxication in rat erythrocytes. Bull. Environ. Contam. Toxicol. 88: 486–490 (2012)

    Article  CAS  Google Scholar 

  4. de Freitas MV, Netto Rde C, da Costa Huss JC, de Souza TM, Costa JO, Firmino CB, Penha-Silva N. Influence of aqueous crude extracts of medicinal plants on the osmotic stability of human erythrocytes. Toxicol. In Vitro 22: 219–224 (2008)

    Article  Google Scholar 

  5. Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174: 27–37 (2008)

    Article  CAS  Google Scholar 

  6. Agarwal R, Katiyar SK, Zaidi SI, Mukhtar H. Inhibition of skin tumor promotercaused induction of epidermal ornithine decarboxylase in SENCAR mice by polyphenolic fraction isolated from green tea and its individual epicatechin derivatives. Cancer Res. 52: 3582–3588 (1992)

    CAS  Google Scholar 

  7. Hosseinzadeh H, Montahaei R. Protective effect of Nigella sativa L. extracts and thymoquinone, its active constituent, on renal ischemia-reperfusioninduced oxidative damage in rats. Pharmacology (online) 1: 176–189 (2007)

    Google Scholar 

  8. Yasmeen H, Hasnain S. In vitro antioxidant effect of Camellia sinensis on human cell cultures. Pak. J. Pharm. Sci. 28: 1573–1581 (2015)

    CAS  Google Scholar 

  9. Pan X, Niu G, Liu H. Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chem. Eng. Process. 42: 129–133 (2003)

    Article  CAS  Google Scholar 

  10. Khalili M, Ebrahimzadeh MA, Safdari Y. Antihaemolytic activity of thirty herbal extracts in mouse red blood cells. Arh. Hig. Rada. Toksikol. 65: 399–406 (2015)

    Google Scholar 

  11. Chang CC, Yang MH, Wen HM, Chern JC. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. J. Food Drug Anal. 10: 178–182 (2002)

    CAS  Google Scholar 

  12. Folin O, Ciocalteu V. On tyrosine and tryptophane determinations in proteins. J. Biol. Chem. 73: 627–650 (1927)

    CAS  Google Scholar 

  13. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 19: 669–675 (2006)

    Article  CAS  Google Scholar 

  14. Cavin A, Hostettmann K, Dyatmyko W, Potterat O. Antioxidant and lipophilic constituents of Tinospora crispa. Planta Med. 64: 393–396 (1998)

    Article  CAS  Google Scholar 

  15. Oyaizu M. Studies on products of browning reaction: Antioxidant activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. 44: 307–315 (1986)

    Article  CAS  Google Scholar 

  16. Naim M, Gestetner B, Bondi A, Birk Y. Antioxidative and antihemolytic activities of soybean isoflavones. J. Agr. Food Chem. 24: 1174–1177 (1976)

    Article  CAS  Google Scholar 

  17. Muanprasat C, Wongborisuth C, Pathomthongtaweechai N, Satitsri S, Hongeng S. Protection against oxidative stress in beta thalassemia/ hemoglobin E erythrocytes by inhibitors of glutathione efflux transporters. PLoS ONE 8: e55685 (2013)

    Article  Google Scholar 

  18. Alothman M, Bhat R, Karim AA. Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 115: 785–788 (2009)

    Article  CAS  Google Scholar 

  19. Costa RM, Magalhães AS, Pereira JA, Andrade PB, Valentão P, Carvalho M, Silva BM. Evaluation of free radical-scavenging and antihemolytic activities of quince (Cydonia oblonga) leaf: A comparative study with green tea (Camellia sinensis). Food Chem. Toxicol. 47: 860–865 (2009)

    Article  CAS  Google Scholar 

  20. Xi J, Shen D, Li Y, Zhang R. Ultrahigh pressure extraction as a tool to improve the antioxidant activities of green tea extracts. Food Res. Int. 44: 2783–2787 (2011)

    Article  CAS  Google Scholar 

  21. Chhetri HP, Yogol NS, Sherchan J, Anupa K, Mansoor S, Thapa P. Phytochemical and antimicrobial evaluations of some medicinal plants of Nepal. Kathmandu Univ. J. Sci. Eng. Technol. 4: 49–54 (2008)

    Google Scholar 

  22. Li S, Yuan W, Deng G, Wang P, Yang P, Aggarwal BB. Chemical composition and product quality control of turmeric (Curcuma longa L.). Pharm. Crops 2: 28–54 (2011)

    Article  CAS  Google Scholar 

  23. Babazadeh B, Sadeghnia HR, Kapurchal ES, Parsaee H, Nasri S, Tayarani- Najaran Z. Protective effect of Nigella sativa and thymoquinone on serum/ glucose deprivation-induced DNA damage in pc12 cells._Avicenna J. Phytomed. 2: 125–132 (2012)

    Google Scholar 

  24. James O, Alewo IM. In vitro antihemolytic activity of gymnema sylvestre extracts against hydrogen peroxide (H2O2) induced haemolysis in human erythrocytes. Am. J. Phytomed. Clin. Ther. 2: 861–869 (2014)

    Google Scholar 

  25. Li M, Ngadi MO, Ma Y. Optimisation of pulsed ultrasonic and microwaveassisted extraction for curcuminoids by response surface methodology and kinetic study. Food Chem. 165: 29–34 (2014)

    Article  CAS  Google Scholar 

  26. Fukumoto LR, Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agr. Food Chem. 48: 3597–3604 (2000)

    Article  CAS  Google Scholar 

  27. Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P, Vidal N. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chem. 97: 654–660 (2006)

    Article  CAS  Google Scholar 

  28. Javanmardi J, Stushnoff C, Locke E, Vivanco JM. Antioxidant activity and total phenolic content of Iranian Ocimum accessions. Food Chem. 83: 547–550 (2003)

    Article  CAS  Google Scholar 

  29. Kahkonen MP, Hopia AT, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 47: 3954–3962 (1999)

    Article  CAS  Google Scholar 

  30. Loganayaki N, Siddhuraju P, Manian S. Antioxidant activity of two traditional Indian vegetables: Solanum nigrum L. and Solanum torvum L. Food Sci. Biotechnol. 19: 121–127 (2010)

    Article  CAS  Google Scholar 

  31. Patel VR, Patel PR, Kajal SS. Antioxidant activity of some selected medicinal plants in western region of India. Adv. Biol. Res. 4: 23–26 (2010)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Humaira Yasmeen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yasmeen, H., Hassnain, S. Comparative analysis of different bioactivities of Curcuma longa, Nigella sativa seeds, and Camellia sinensis extracted by four different methods: A green way to reduce oxidative stress. Food Sci Biotechnol 25, 811–819 (2016). https://doi.org/10.1007/s10068-016-0136-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0136-1

Keywords

Navigation