Skip to main content
Log in

A novel process for obtaining phenylpropanoic acid precursor using Escherichia coli with a constitutive expression system

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Phenylpropanoids are widely used in food supplements, pharmaceuticals, and cosmetics with diverse benefits to human health. Trans-cinnamic acid or p-coumaric acid is usually used as the starting precursor to produce phenylpropanoids. Synthetic bioengineering of microbial cell factories offers a sustainable and flexible alternative method for obtaining these compounds. In this study, a constitutive expression system consisting of Rhodotorula glutinis phenylalanine/tyrosine ammonia lyase was developed to produce a phenylpropanoic acid precursor in Escherichia coli. To improve trans-cinnamic acid and p-coumaric acid production, BioBrick optimization was investigated, causing a 7.2- and 14.2-fold increase in the yield of these compounds, respectively. The optimum strain was capable of de novo producing 78.81 mg/L of trans-cinnamic acid and 34.67 mg/L of p-coumaric acid in a shake flask culture. The work presented here paves the way for the development of a sustainable and economical process for microbial production of a phenylpropanoic acid precursor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pan MH, Lai CS, Ho CT. Anti-inflammatory activity of natural dietary flavonoids. Food Funct. 1: 15–31 (2010)

    Article  CAS  Google Scholar 

  2. Gresele P, Cerletti C, Guglielmini G, Pignatelli P, de Gaetano G, Violi F. Effects of resveratrol and other wine polyphenols on vascular function: An update. J. Nutr. Biochem. 22: 201–211 (2011)

    Article  CAS  Google Scholar 

  3. Clere N, Faure S, Martinez MC, Andriantsitohaina R. Anticancer properties of flavonoids: Roles in various stages of carcinogenesis. Cardiovasc. Hematol. Agents Med. Chem. 9: 62–77 (2011)

    Article  CAS  Google Scholar 

  4. Bourgaud F, Gravot A, Milesi S, Gontier E. Production of plant secondary metabolites: A historical perspective. Plant Sci. 161: 839–851 (2001)

    Article  CAS  Google Scholar 

  5. Awah FM, Uzoegwu PN, Ifeonu P, Oyugi JO, Rutherford J, Yao XJ, Fehrmann F, Fowke KR, Eze MO. Free radical scavenging activity, phenolic contents and cytotoxicity of selected Nigerian medicinal plants. Food Chem. 131: 1279–1286 (2012)

    Article  CAS  Google Scholar 

  6. Duarte-Almeida JM, Salatino A, Genovese MI, Lajolo FM. Phenolic composition and antioxidant activity of culms and sugarcane (Saccharum officinarum L.) products. Food Chem. 125: 660–664 (2011)

    Article  CAS  Google Scholar 

  7. Vrèek IV, Bojic M, Žuntar I, Mendaš G, Medic-Šaric M. Phenol content, antioxidant activity and metal composition of Croatian wines deriving from organically and conventionally grown grapes. Food Chem. 124: 354–361 (2011)

    Article  Google Scholar 

  8. Limem I, Guedonc E, Hehn A, Bourgaud F, Ghedira LC, Engasser JM, Ghoul M. Production of phenylpropanoid compounds by recombinant microorganisms expressing plant-specific biosynthesis genes. Process Biochem. 43: 463–479 (2008)

    Article  CAS  Google Scholar 

  9. Zhou J, Du G, Chen J. Novel fermentation processes for manufacturing plant natural products. Curr. Opin. Biotech. 25: 17–23 (2014)

    Article  CAS  Google Scholar 

  10. Huang Q, Lin Y, Yan Y. Caffeic acid production enhancement by engineering a phenylalanine over-producing Escherichia coli strain. Biotechnol. Bioeng. 110: 3188–3196 (2013)

    Article  CAS  Google Scholar 

  11. Kim MJ, Kim BG, Ahn JH. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl. Microbiol. Biot. 97: 7195–7204 (2013)

    Article  CAS  Google Scholar 

  12. Santos CN, Koffas M, Stephanopoulos G. Optimization of a heterologous pathway for the production of flavonoids from glucose. Metab. Eng. 13: 392–400 (2011)

    Article  CAS  Google Scholar 

  13. Leonard E, Yan Y, Fowler ZL, Li Z, Lim CG, Lim KH, Koffas MA. Strain improvement of recombinant Escherichia coli for efficient production of plant flavonoids. Mol. Pharm. 5: 257–265 (2008)

    Article  CAS  Google Scholar 

  14. Lim CG, Fowler ZL, Hueller T, Schaffer S, Koffas MA. High-yield resveratrol production in engineered Escherichia coli. Appl. Environ. Microb. 77: 3451–3460 (2011)

    Article  CAS  Google Scholar 

  15. Wu J, Du G, Zhou J, Chen J. Metabolic engineering of Escherichia coli for (2S)-pinocembrin production from glucose by a modular metabolic strategy. Metab. Eng. 16: 48–55 (2013)

    Article  Google Scholar 

  16. Leonard E, Lim KH, Saw PN, Koffas MA. Engineering central metabolic pathways for high-level flavonoid production in Escherichia coli. Appl. Environ. Microb. 73: 3877–3886 (2007)

    Article  CAS  Google Scholar 

  17. Van Summeren-Wesenhagen PV, Marienhagen J. Metabolic engineering of Escherichia coli for the synthesis of the plant polyphenol pinosylvin. Appl. Environ. Microb. 81: 840–849 (2015)

    Article  Google Scholar 

  18. McKenna R, Nielsen DR. Styrene biosynthesis from glucose by engineered Escherichia coli. Metab. Eng. 13: 544–554 (2011)

    Article  CAS  Google Scholar 

  19. Putignani L, Massa O, Alisi A. Engineered Escherichia coli as new source of flavonoids and terpenoids. Food Res. Int. 54: 1084–1095 (2013)

    Article  CAS  Google Scholar 

  20. Wu J, Liu P, Fan Y, Bao H, Du G, Zhou J, Chen J. Multivariate modular metabolic engineering of Escherichia coli to produce resveratrol from L-tyrosine. J. Biotechnol. 167: 404–411 (2013)

    Article  CAS  Google Scholar 

  21. Na D, Yoo SM, Chung H, Park H, Park JH, Lee SY. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nat. Biotechnol. 31: 170–174 (2013)

    Article  CAS  Google Scholar 

  22. Shetty RP, Endy D, Knight TF. Engineering BioBrick vectors from BioBrick parts. J. Biol. Eng. 2: 5 (2008)

    Article  Google Scholar 

  23. Xue Z, McCluskey M, Cantera K, Ben-Bassat A, Sariaslani RS, Huang L. Improved production of p-hydroxycinnamic acid from tyrosine using a novel thermostable phenylalanine/tyrosine ammonia lyase enzyme. Enzyme. Microb. Tech. 42: 58–64 (2007)

    Article  CAS  Google Scholar 

  24. Qi L, Haurwitz RE, Shao WJ, Doudna JA, Arkin AP. RNA processing enables predictable programming of gene expression. Nat. Biotechnol. 30: 1002–1006 (2012)

    Article  CAS  Google Scholar 

  25. Jones KL, Kim SW, Keasling JD. Low-copy plasmids can perform as well as or better than high-copy plasmids for metabolic engineering of bacteria. Metab. Eng. 2: 328–338 (2000)

    Article  CAS  Google Scholar 

  26. Khamduang M, Packdibamrung K, Chutmanop J, Chisti Y, Srinophakun P. Production of L-phenylalanine from glycerol by a recombinant Escherichia coli. J. Ind. Microbiol. Biotechnol. 36: 1267–1274 (2009)

    Article  CAS  Google Scholar 

  27. Santos CN, Xiao W, Stephanopoulos G. Rational, combinatorial, and genomic approaches for engineering L-tyrosine production in Escherichia coli. P. Natl. Acad. Sci. USA 109: 13538–13543 (2012)

    Article  CAS  Google Scholar 

  28. Yuan P, Cao W, Wang Z, Chen K, Li Y, Ouyang P. Enhancement of Lphenylalanine production by engineered Escherichia coli using phased exponential L-tyrosine feeding combined with nitrogen source optimization. J. Biosci. Bioeng. 120: 36–40 (2015)

    Article  CAS  Google Scholar 

  29. Zhu L, Cui W, Fang Y, Liu Y, Gao X, Zhou Z. Cloning, expression and characterization of phenylalanine ammonia-lyase from Rhodotorula glutinis. Biotechnol. Lett. 35: 751–756 (2013)

    Article  CAS  Google Scholar 

  30. Leonard E, Yan Y, Koffas MA. Functional expression of a P450 flavonoid hydroxylase for the biosynthesis of plant-specific hydroxylated flavonols in Escherichia coli. Metab. Eng. 8: 172–181 (2006)

    Article  CAS  Google Scholar 

  31. Leonard E, Koffas MA. Engineering of artificial plant cytochrome P450 enzymes for synthesis of isoflavones by Escherichia coli. Appl. Environ. Microb. 73: 7246–7251 (2007)

    Article  CAS  Google Scholar 

  32. Ajikumar PK, Xiao WH, Tyo KE, Wang Y, Simeon F, Leonard E, Mucha O, Phon TH, Pfeifer B, Stephanopoulos G. Isoprenoid pathway optimization for Taxol precursor overproduction in Escherichia coli. Science 330: 70–74 (2010)

    Article  CAS  Google Scholar 

  33. Kang SY, Choi O, Lee JK, Hwang BY, Uhm TB, Hong YS. Artificial biosynthesis of phenylpropanoic acids in a tyrosine overproducing Escherichia coli strain. Microb. Cell Fact. 11: 153 (2012)

    Article  CAS  Google Scholar 

  34. Jendresen CB, Stahlhut SG, Li M, Gaspar P, Siedler S, Forster J, Maury J, Borodina I, Nielsen AT. Highly active and specific tyrosine ammonia-lyases from diverse origins enable enhanced production of aromatic compounds in bacteria and Saccharomyces cerevisiae. Appl. Environ. Microb. 81: 4458–4476 (2015)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junfang Lin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Jl., Guo, L., Sun, P. et al. A novel process for obtaining phenylpropanoic acid precursor using Escherichia coli with a constitutive expression system. Food Sci Biotechnol 25, 795–801 (2016). https://doi.org/10.1007/s10068-016-0134-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0134-3

Keywords

Navigation