Advertisement

Food Science and Biotechnology

, Volume 25, Issue 3, pp 763–770 | Cite as

A new biotechnological process to enhance the soymilk bioactivity

  • Lívia Dias de Queirós
  • Juliana Alves Macedo
  • Gabriela Alves MacedoEmail author
Article

Abstract

Equol, a daidzein metabolite produced exclusively by intestinal bacteria in some, but not all, humans, exhibits a wide range of beneficial health effects owing to its superior nutraceutical effect compared with isoflavones of soy. The aim of this work was to develop bioprocesses capable of increasing the bioactive properties of soymilk and, most importantly, increase the equol content by a biotechnological process in vitro. Biotransformation processes based on soymilk fermentation by probiotic lactic bacteria and application of the enzyme tannase caused an increase in the bioactive isoflavones and antioxidant capacity of soymilk. Furthermore, these processes approximately resulted in a 10-fold increase in the equol content of the soymilk. This is the first study to produce a significant equol concentration in soymilk using enzymatic processing only. The results suggest a new and effective biotechnological process, with major commercial potential, capable of producing a bioactive soy extract that intends to be “functional for everyone.”

Keywords

isoflavones equol tannase biotransformation antioxidant capacity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Messina M. A brief historical overview of the past two decades of soy and isoavone research. J. Nutr. 140: 1350–1354 (2010)CrossRefGoogle Scholar
  2. 2.
    Schmitt E, Dekant W, Stopper, H. Assaying the estrogenicity of phytoestrogens in cells of different estrogen sensitive tissues. Toxicol. In Vitro 15: 433–439 (2001)CrossRefGoogle Scholar
  3. 3.
    Coward L, Smith M, Kirk M, Barnes S. Chemical modification of isoflavones in soyfoods during cooking and processing. Am. J. Clin. Nutr. 68: 1486S–1491S (1998)Google Scholar
  4. 4.
    Barnes S, Prasain J, D’Alessandro T, Arabshahi A, Botting N, Lila MA, Jackson G, Janleb EM, Weaverb CM. The metabolism and analysis of isoflavones and other dietary polyphenolsin foods and biological systems. Food Funct. 2: 235–244 (2011)CrossRefGoogle Scholar
  5. 5.
    Chien HL, Huang HY, Chou CC. Transformation of isoavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bidobacteria. Food Microbiol. 23: 772–778 (2006)CrossRefGoogle Scholar
  6. 6.
    Cho KM, Hong SY, Math RK, Lee JH, Kambiranda DM, Kim JM, Islam SMA, Yun MG, Cho JJ, Lim WJ, Yun HD. Biotransformation of phenolics (isoflavones, flavanols and phenolic acids) during the fermentation of cheonggukjang by Bacillus pumilus HY1. Food Chem. 114: 413–419 (2009)CrossRefGoogle Scholar
  7. 7.
    Nielsen IL, Williamson G. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr. Cancer 57: 1–10 (2007)CrossRefGoogle Scholar
  8. 8.
    Ghafoor K, Al-Juhami FY, Park J. Isoflavones: Chemistry, Analysis, Function and Effects. 1th ed. RSC Publishing, Cambridge, UK. pp. 49–60 (2012)CrossRefGoogle Scholar
  9. 9.
    Shu XO, Zheng Y, Cai H, Gu K, Chen Z, Zheng W, Lu W. Soy food intake and breast cancer survival. JAMA-J. Am. Med. Assoc. 302: 2437–2443 (2009)CrossRefGoogle Scholar
  10. 10.
    Tousen Y, Ezaki J, Fujii Y, Ueno T, Nishimuta M, Ishimi Y. Natural S-equol decreases bone resorption in postmenopausal, non-equol-producing Japanese women: A pilot randomized, placebo-controlled trial. Menopause 18: 563–574 (2011)CrossRefGoogle Scholar
  11. 11.
    Yuan JP, Wang JH, Liu, X. Metabolism of dietary soy isoflavones to equol by human intestinal microflora-implications for health. Mol. Nutr. Food Res. 51: 765–781 (2007)CrossRefGoogle Scholar
  12. 12.
    Setchell KDR, Brown NM, Lydeking-Olsen E. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr. 132: 3577–3584 (2002)Google Scholar
  13. 13.
    Rowland IR, Wiseman H, Sanders TA, Adlercreutz H, Bowey EA. Interindividual variation in metabolism of soy isoflavones and lignans: Influence of habitual diet on equol production by the gut microflora. Nutr. Cancer 36: 27–32 (2000)CrossRefGoogle Scholar
  14. 14.
    Setchell KDR, Clerici C. Equol: History, chemistry and formation. J. Nutr. 140: 1355–1362 (2010)CrossRefGoogle Scholar
  15. 15.
    Di Cagno R, Mazzacane F, Rizello CG, Vincentini O, Silano M, Guilani G, De Angelis M, Gobbetti M. Synthesis of isoavone aglycones and equol in soy milks fermented by food-related lactic acid bacteria and their effect on human intestinal Caco-2 cells. J. Agr. Food Chem. 58: 10338–10446 (2010)CrossRefGoogle Scholar
  16. 16.
    Lekha PK, Lonsane BK. Production and application of tannin acyl hydrolase: state of the art. Adv. Appl. Microbiol. 44: 215–260 (1997)CrossRefGoogle Scholar
  17. 17.
    Garcia-Conesa MT, Ostergaard P, Kauppinen S, Williamson G. Hydrolysis of diethyl diferulates by tannase from Aspergillus oryzae. Carbohyd. Polym. 44: 319–324 (2001)CrossRefGoogle Scholar
  18. 18.
    Ferreira LR, Macedo JA, Ribeiro ML, Macedo GA. Improving the chemopreventive potential of orange juice by enzymatic biotransformation. Food Res. Int. 51: 526–535 (2013)CrossRefGoogle Scholar
  19. 19.
    Macedo JA, Battestin V, Ribeiro ML, Macedo GA. Increasing the antioxidant power of tea extracts by biotransformation of polyphenols. Food Chem. 126: 491–497 (2011)CrossRefGoogle Scholar
  20. 20.
    Madeira JV, Macedo JA, Macedo GA. A new process for simultaneous production of tannase and phytase by Paecilomyces variotii in solid-state fermentation of orange pomace. Bioproc. Biosyst. Eng. 35: 477–482 (2012)CrossRefGoogle Scholar
  21. 21.
    Mandarino JMG, Carrão-Panizzi MC. A soja na cozinha. 1th ed. Embrapa Soja. Londrina, SP, Brazil. p. 59 (1999)Google Scholar
  22. 22.
    Battestin V, Macedo GA. Tannase production by Paecilomyces variotii. Bioresoure Technol. 98: 1832–1837 (2007)CrossRefGoogle Scholar
  23. 23.
    Sharma S, Bhat TK, Dawra RK. A spectrophotometric method for assay of tannase using rhodanine. Anal. Biochem. 279: 85–89 (2000)CrossRefGoogle Scholar
  24. 24.
    Cruz AG, Guerreiro L, Nogueira LC, Sant’Ana AS, Faria JAF, Oliveira CAF, Deliza R, Cunha RL, Faria JAF, Bolini HMA. Developing a prebiotic yogurt: Rheological, physico-chemical and microbiological aspects and adequacy of survival analysis methodology. Food Eng. 114: 323–330 (2013)CrossRefGoogle Scholar
  25. 25.
    Chandler SF, Dodds JH. The effect of phosphate, nitrogen, and sucrose on the production of phenolics and socosidine in callus cultures of Solanum tuberosum. Plant Cell Rep. 2: 105–108 (1983)CrossRefGoogle Scholar
  26. 26.
    Aguiar CL, Suzuki CN, Paredes JG, Alencar SM, Park YK. Transformation of beta-glucoside isoflavones on solid-state fermentation of the soy flour with Aspergillus oryzae. Cienc. Tecnol. Aliment. 4: 115–121 (2003)CrossRefGoogle Scholar
  27. 27.
    Park YK, Alencar SM, Nery IA, Aguiar CL, Pacheco TARC. Enrichment of isoflavone aglycones in extracted soybean isoflavones by heat and fungal ß-glucosidase. Food Sci. Ind. 34: 14–19 (2001)Google Scholar
  28. 28.
    McCue PP, Shetty K. Phenolic antioxidant mobilization during yogurt production from soymilk using Kefir cultures. Process Biochem. 40: 1791–1797 (2005)CrossRefGoogle Scholar
  29. 29.
    Nam DH, Kim HJ, Lim JS, Kim KH, Park C, Kim JH, Lim J, Young DK, Kim IH, Kim JS. Simultaneous enhancement of free isoavone content and potential of soybean by fermentation with Aspergillus oryzae. J. Food Sci. 76: 194–200 (2011)CrossRefGoogle Scholar
  30. 30.
    Tyug TS, Prasad KN, Ismail A. Antioxidant capacity, phenolics and isoflavones in soybean by-products. Food Chem. 123: 583–589 (2010)CrossRefGoogle Scholar
  31. 31.
    Wardhani DH, Vázquez JA, Pandiellaa SS. Optimisation of antioxidants extraction from soybeans fermented by Aspergillus oryzae. Food Chem. 118: 731–739 (2010)CrossRefGoogle Scholar
  32. 32.
    Shon MY, Lee J, Choi JH, Nam SY, Seo K, Lee SW, Sung N, Park SK. Antioxidant and free radical scavenging activity of methanol extract of chungkukjang. J. Food Compos. Anal. 20: 113–118 (2007)CrossRefGoogle Scholar
  33. 33.
    Dueñas M, Hernández T, Robredo S, Lamparski G, Estrella I, Muñoz R. Bioactive phenolic compounds of soybean (Glycine max cv. Merit): Modifications by different microbiological fermentations. Pol. J. Food. Nutr. Sci. 62: 241–250 (2012)Google Scholar
  34. 34.
    Rekha CR, Vijayalakshmi G. Isoflavone phytoestrogens in soymilk fermented with beta-glucosidase producing probiotic lactic acid bacteria. Int. J. Food Sci. Tech. 62: 111–120 (2011)Google Scholar
  35. 35.
    Tsangalis D, Ashton JF, Mcgill AEJ, Shah NP. Enzymic transformation of isoflavone phytoestrogens in soymilk by beta-glucosidase-producing bifidobacteria. J. Food Sci. 6: 3104–3113 (2002)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Lívia Dias de Queirós
    • 2
  • Juliana Alves Macedo
    • 1
  • Gabriela Alves Macedo
    • 1
    Email author
  1. 1.Department of Food and Nutrition, Faculty of Food EngineeringUniversity of CampinasCampinasBrazil
  2. 2.Food Science Department, Faculty of Food EngineeringUniversity of CampinasCampinasBrazil

Personalised recommendations