Advertisement

Food Science and Biotechnology

, Volume 25, Supplement 1, pp 107–112 | Cite as

Porcine hemoglobin promotes lipid excretion to feces more strongly than globin protein in rats

  • Ryota Hosomi
  • Ren Otsuka
  • Hirofumi Arai
  • Seiji Kanda
  • Toshimasa Nishiyama
  • Munehiro Yoshida
  • Kenji Fukunaga
Article
  • 28 Downloads

Abstract

In an effort to clarify whether the lipid-lowering effect of hemoglobin is due to globin protein or heme, this study investigated the effects of dietary porcine hemoglobin (PH) and porcine globin (PG) on lipids contents of serum, liver, and feces in rats. Five-week-old male Wistar rats were divided into 3 dietary groups of 7 rats each, with one group receiving a control diet and the other groups receiving diets containing 1.25% (w/w) PH or 1.18% (w/w) PG for 4 weeks. The PH diet decreased triacylglycerol content in serum and cholesterol in serum and liver, whereas the PG diet reduced triacylglycerol content in serum and cholesterol in liver. Fecal lipid excretion in the PH group was significantly higher than in the PG group. Therefore, PH affected lipid excretion to feces due to globin protein as well as heme.

Keywords

porcine hemoglobin globin heme lipid excretion cholesterol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nowak B, von Mueffling T. Porcine blood cell concentrates for food products: Hygiene, composition, and preservation. J. Food Protect. 69: 2183–2192 (2006)Google Scholar
  2. 2.
    In MJ, Kim DC, Chae HJ, Oh NS. Effects of degree of hydrolysis and pH on the solubility of heme-iron enriched peptide in hemoglobin hydrolysate. Biosci. Biotech. Bioch. 67: 365–367 (2003)CrossRefGoogle Scholar
  3. 3.
    Nyberg F, Sanderson K, Glamsta EL. The hemorphins: A new class of opioid peptides derived from the blood protein hemoglobin. Biopolymers 43: 147–156 (1997)CrossRefGoogle Scholar
  4. 4.
    Kagawa K, Matsutaka H, Fukuhama C, Watanabe Y, Fujino H. Globin digest, acidic protease hydrolysate, inhibits dietary hypertriglyceridemia and Val-Val-Tyr-Pro, one of its constituents, possesses most superior effect. Life Sci. 58: 1745–1755 (1996)CrossRefGoogle Scholar
  5. 5.
    Zhao QY, Piot JM, Gautier V, Cottenceau G. Isolation and characterization of a bacterial growth-stimulating peptide from a peptic bovine hemoglobin hydrolysate. Appl. Microbiol. Biot. 45: 778–784 (1996)CrossRefGoogle Scholar
  6. 6.
    Fukunaga K, Yukawa N, Hosomi R, Nishiyama T, Yoshida M. Dietary combination of fish oil and hemoglobin hydrolysates alters serum and liver lipid contents in rat. Food Nutr. Sci. 4: 86–93 (2013)CrossRefGoogle Scholar
  7. 7.
    Sun Q, Luo Y. Porcine hemoglobin hydrolysate prepared with pepsin: Antioxidant activities and their mechanisms. Int. J. Food Prop. 14: 840–853 (2011)CrossRefGoogle Scholar
  8. 8.
    Jayathilakan K, Sultana K, Radhakrishna K, Bawa AS. Utilization of byproducts and waste materials from meat, poultry and fish processing industries: A review. J. Food Sci. Technol. 49: 278–293 (2012)CrossRefGoogle Scholar
  9. 9.
    Hosomi R, Fukunaga K, Nishiyama T, Yoshida M. Effects of porcine hemoglobin on serum lipid content and fecal lipid excretion in rats. J. Med. Food 17: 302–309 (2014)CrossRefGoogle Scholar
  10. 10.
    Yip YK, Waks M, Beychok S. Reconstitution of native human hemoglobin from separated globin chains and alloplex intermediates. P. Natl. Acad. Sci. USA 74: 64–68 (1977)CrossRefGoogle Scholar
  11. 11.
    White JA, Hart RJ, Fry JC. An evaluation of the Waters Pico-Tag system for the amino-acid analysis of food materials. J. Autom. Chem. 8: 170–177 (1986)CrossRefGoogle Scholar
  12. 12.
    Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680–685 (1970)CrossRefGoogle Scholar
  13. 13.
    Reeves PG, Nielsen FH, Fahey GC Jr. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition ad hoc writing committee on the reformulation of the AIN-76A rodent diet. J. Nutr. 123: 1939–1951 (1993)Google Scholar
  14. 14.
    Horton JD, Bashmakov Y, Shimomura I, Shimano H. Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. P. Natl. Acad. Sci. USA 95: 5987–5992 (1998)CrossRefGoogle Scholar
  15. 15.
    Rouser G, Fkeischer S, Yamamoto A. Two dimensional thin layer chromatographic separation of polar lipids and determination of phospholipids by phosphorus analysis of spots. Lipids 5: 494–496 (1970)CrossRefGoogle Scholar
  16. 16.
    Van De Kamer JH, Bokkel Huinink HT, Weyers HA. Rapid method for the determination of fat in feces. J. Biol. Chem. 177: 347–355 (1949)Google Scholar
  17. 17.
    Hosomi R, Fukunaga K, Arai H, Kanda S, Nishiyama T, Yoshida M. Effect of combination of dietary fish protein and fish oil on lipid metabolism in rats. J. Food Sci. Technol. 50: 266–274 (2013)CrossRefGoogle Scholar
  18. 18.
    Ide T, Hong DD, Ranasinghe P, Takahashi Y, Kushiro M, Sugano M. Interaction of dietary fat types and sesamin on hepatic fatty acid oxidation in rats. Biochim. Biophys. Acta 1682: 80–91 (2004)CrossRefGoogle Scholar
  19. 19.
    Markwell MA, McGroarty EJ, Bieber LL, Tolbert NE. The subcellular distribution of carnitine acyltransferases in mammalian liver and kidney. A new peroxisomal enzyme. J. Biol. Chem. 248: 3426–3432 (1973)Google Scholar
  20. 20.
    Tanabe T, Nakanishi S, Hashimoto T, Ogiwara H, Nikawa JI, Numa S. [1] Acetyl-CoA carboxylase from rat liver: EC 6.4.1.2 Acetyl-CoA: Carbon-dioxide ligase (ADP-forming). Method Enzymol. 71: 5–16 (1981)CrossRefGoogle Scholar
  21. 21.
    Kelley DS, Nelson GJ, Hunt JE. Effect of prior nutritional status on the activity of lipogenic enzymes in primary monolayer cultures of rat hepatocytes. Biochem. J. 235: 87–90 (1986)CrossRefGoogle Scholar
  22. 22.
    Hsu RY, Lardy HA. Malic enzyme. Vol. 13, pp.230–235, In: Methods Enzymol. Lowebsein LM (ed). Academic Press, New York, NY, USA (1969)Google Scholar
  23. 23.
    Kelley DS, Kletzien RF. Ethanol modulation of the hormonal and nutritional regulation of glucose 6-phosphate dehydrogenase activity in primary cultures of rat hepatocytes. Biochem. J. 217: 543–549 (1984)CrossRefGoogle Scholar
  24. 24.
    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193: 265–275 (1951)Google Scholar
  25. 25.
    Hall WL, Millward DJ, Long SJ, Morgan LM. Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br. J. Nutr. 89: 239–248 (2003)CrossRefGoogle Scholar
  26. 26.
    Uzel C, Conrad ME. Absorption of heme iron. Semin. Hematol. 35: 27–34 (1998)Google Scholar
  27. 27.
    Matsumoto J, Mori N, Doi M, Kishida T, Ebihara K. Evaluation of iron bioavailability from bonito dark muscle using anemic rats. J. Agr. Food Chem. 51: 4478–4482 (2003)CrossRefGoogle Scholar
  28. 28.
    Uemura K, Hosomi R, Fukunaga K, Nishiyama T, Yoshida M. Effect of difference in chemical species of dietary iron on iron status in rats. Trace Nutr. Res. 27: 13–16 (2010) (in Japanese)Google Scholar
  29. 29.
    Moriyama T, Kishimoto K, Nagai K, Urade R, Ogawa T, Utsumi S, Maruyama N, Maebuchi M. Soybean beta-conglycinin diet suppresses serum triglyceride levels in normal and genetically obese mice by induction of beta-oxidation, downregulation of fatty acid synthase, and inhibition of triglyceride absorption. Biosci. Biotech. Bioch. 68: 352–359 (2004)CrossRefGoogle Scholar
  30. 30.
    Hosomi R, Miyauchi K, Yamamoto D, Arai H, Nishiyama T, Yoshida M, Fukunaga K. Salmon protamine decreases serum and liver lipid contents by Inhibiting lipid absorption in an in vitro gastrointestinal digestion model and in rats. J. Food Sci. 80: 2346–2353 (2015)CrossRefGoogle Scholar
  31. 31.
    Okazaki Y, Tomotake H, Tsujimoto K, Sasaki M, Kato N. Consumption of a resistant protein, sericin, elevates fecal immunoglobulin A, mucins, and cecal organic acids in rats fed a high-fat diet. J. Nutr. 141: 1975–1981 (2011)CrossRefGoogle Scholar
  32. 32.
    Morita T, Oh-hashi A, Takei K, Ikai M, Kasaoka S, Kiriyama S. Cholesterollowering effects of soybean, potato and rice proteins depend on their low methionine contents in rats fed a cholesterol-free purified diet. J. Nutr. 127: 470–477 (1997)Google Scholar
  33. 33.
    Nagata Y, Ishiwaki N, Sugano M. Studies on the mechanism of antihypercholesterolemic action of soy protein and soy protein-type amino acid mixtures in relation to the casein counterparts in rats. J. Nutr. 112: 1614–1625 (1982)Google Scholar
  34. 34.
    Higaki N, Sato K, Suda H, Suzuka T, Komori T, Saeki T, Nakamura Y, Ohtsuki K, Iwami K, Kanamoto R. Evidence for the existence of a soybean resistant protein that captures bile acid and stimulates its fecal excretion. Biosci. Biotech. Bioch. 70: 2844–2852 (2006)CrossRefGoogle Scholar
  35. 35.
    Ma Y, Xiong YL. Antioxidant and bile acid binding activity of buckwheat protein in vitro digests. J. Agr. Food Chem. 57: 4372–4380 (2009)CrossRefGoogle Scholar
  36. 36.
    Ijssennagger N, de Wit N, Muller M, van der Meer R. Dietary heme-mediated PPARalpha activation does not affect the heme-induced epithelial hyperproliferation and hyperplasia in mouse colon. PLoS ONE 7: e43260 (2012)CrossRefGoogle Scholar
  37. 37.
    Sesink AL, Termont DS, Kleibeuker JH, Van Der Meer R. Red meat and colon cancer: Dietary haem, but not fat, has cytotoxic and hyperproliferative effects on rat colonic epithelium. Carcinogenesis 21: 1909–1915 (2000)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Ryota Hosomi
    • 1
  • Ren Otsuka
    • 1
  • Hirofumi Arai
    • 2
  • Seiji Kanda
    • 3
  • Toshimasa Nishiyama
    • 3
  • Munehiro Yoshida
    • 1
  • Kenji Fukunaga
    • 1
  1. 1.Laboratory of Food and Nutritional Sciences, Faculty of Chemistry, Materials, and BioengineeringKansai UniversityOsakaJapan
  2. 2.Department of Biotechnology and Environmental ChemistryKitami Institute of TechnologyKitami, HokkaidoJapan
  3. 3.Department of Public HealthKansai Medical UniversityOsakaJapan

Personalised recommendations