Skip to main content

Advertisement

Log in

Application of in vitro gut fermentation models to food components: A review

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

An Author Correction to this article was published on 05 October 2019

This article has been updated

Abstract

In vitro fermentation models have been developed for study of relationships between gut microbiota and food components. In vitro fermentation gut models involve use of pure cultures, mixed cultures, and human feces, and range from simple batch style fermentations performed in serum bottles to sophisticated pH-controlled multistage continuous culture systems. These models are increasingly used as an alternative to in vivo assays not only for disclosure of physiological activities of food components in the human intestine, but also for development of novel health functional foods. The purpose of this review is to introduce the present status and challenges of use of in vitro gut fermentation models in food studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Change history

  • 05 October 2019

    This article corrects: Application of in vitro gut fermentation models on food components: a review (Food Sci. Biotechnol. 25: 1���7(2016)).

  • 05 October 2019

    This article corrects: Application of in vitro gut fermentation models on food components: a review (Food Sci. Biotechnol. 25: 1���7(2016)).

References

  1. Guerra A, Etienne-Mesmin L, Livrelli V, Denis S, Blanquet-Diot S, Alric M. Relevance and challenges in modeling human gastric and small intestinal digestion. Trends Biotechnol. 30: 591–600 (2012)

    Article  CAS  Google Scholar 

  2. Morgan BL, Winick M. Effects of administration of N-acetylneuraminic acid (NANA) on brain NANA content and behavior. J. Nutr. 110: 416–424 (1980)

    CAS  Google Scholar 

  3. Wang B, McVeagh P, Petocz P, Brand-Miller J. Brain ganglioside and glycoprotein sialic acid in freast-fed compared with formula-fed infants. Am. J. Clin. Nutr. 78: 1024–1029 (2003)

    CAS  Google Scholar 

  4. Sarbini SR, Kolida S, Deaville ER, Gibson GR, Rastall RA. Potential of novel dextran oligosaccharides as prebiotics for obesity management through in vitro experimentation. Br. J. Nutr. 112: 1303–1314 (2014)

    Article  CAS  Google Scholar 

  5. Van Den Abbeele P, Venema K, Van De Wiele T, Verstraete W, Possemiers S. Different human gut models reveal the distinct fermentation patterns of arabinoxylan versus inulin. J. Agr. Food Chem. 61: 9819–9827 (2013)

    Article  Google Scholar 

  6. Yu ZT, Chen C, Kling DE, Liu B, McCoy JM, Merighi M, Heidtman M, Newburg DS. The principal fucosylated oligosaccharides of human milk exhibit prebiotic properties on cultured infant microbiota. Glycobiology 23: 169–177 (2013)

    Article  CAS  Google Scholar 

  7. Al-Tamimi MA, Palframan RJ, Cooper JM, Gibson GR, Rastall RA. In vitro fermentation of sugar beet arabinan and arabino-oligosaccharides by the human gut microflora. J. Appl. Microbiol. 100: 407–414 (2006)

    Article  CAS  Google Scholar 

  8. Walton GE, van den Heuvel EG, Kosters MH, Rastall RA, Tuohy KM, Gibson GR. A randomised crossover study investigating the effects of galactooligosaccharides on the faecal microbiota in men and women over 50 years of age. Br. J. Nutr. 107: 1466–1475 (2012)

    Article  CAS  Google Scholar 

  9. Yin J, Zhang XX, Wu B, Xian Q. Metagenomic insights into tetracycline effects on microbial community and antibiotic resistance of mouse gut. Ecotoxicology 24: 2125–2132 (2015)

    Article  CAS  Google Scholar 

  10. Rescigno M. Intestinal microbiota and its effects on the immune system. Cell. Microbiol. 16: 1004–1013 (2014)

    Article  CAS  Google Scholar 

  11. Kramer A, Bekeschus S, Bröker BM, Schleibinger H, Razavi B, Assadian O. Maintaining health by balancing microbial exposure and prevention of infection: The hygiene hypothesis versus the hypothesis of early immune challenge. J. Hosp. Infect. 83: 29–34 (2013)

    Article  Google Scholar 

  12. Carey CM, Kirk JL, Ojha S, Kostrzynska M. Current and future uses of real-time polymerase chain reaction and microarrays in the study of intestinal microbiota, and probiotic use and effectiveness. Can. J. Microbiol. 53: 537–550 (2007)

    Article  CAS  Google Scholar 

  13. Arboleya S, Salazar N, Solís G, Fernández N, Gueimonde M, de los Reyes-Gavilán CG. In vitro evaluation of the impact of human background microbiota on the response to Bifidobacterium strains and fructooligosaccharides. Br. J. Nutr. 110: 2030–2036 (2013)

    Article  CAS  Google Scholar 

  14. Oviedo-Rondón EO. Molecular methods to evaluate effects of feed additives and nutrients in poultry gut microflora. Rev. Bras. Zootecn. 38: 209–225 (2009)

    Article  Google Scholar 

  15. Fraher MH, O’Toole PW, Quigley EM. Techniques used to characterize the gut microbiota: A guide for the clinician. Nat. Rev. Gastroenterol. Hepatol. 9: 312–322 (2012)

    Article  CAS  Google Scholar 

  16. Zoetendal EG, Collier CT, Koike S, Mackie RI, Gaskins HR. Molecular ecological analysis of the gastrointestinal microbiota: A review. J. Nutr. 134: 465–472 (2004)

    CAS  Google Scholar 

  17. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA. Diversity of the human intestinal microbial flora. Science 308: 1635–1638 (2005)

    Article  Google Scholar 

  18. Souliman S, Blanquet S, Beyssac E, Cardot JM. A level A in vitro/in vivo correlation in fasted and fed states using different methods: Applied to solid immediate release oral dosage form. Eur. J. Pharm. Sci. 27: 72–79 (2006)

    Article  CAS  Google Scholar 

  19. Souliman S, Beyssac E, Cardot JM, Denis S, Alric M. Investigation of the biopharmaceutical behavior of theophylline hydrophilic matrix tablets using USP methods and an artificial digestive system. Drug Dev. Ind. Pharm. 33: 475–483 (2007)

    Article  CAS  Google Scholar 

  20. Minekus M, Marteau P, Havenaar R, Huis in’t Veld JHH. A multicompartmental dynamic computer-controlled model simulating the stomach and small intestine. Altern. Lab. Anim. 23: 197–209 (1995)

    Google Scholar 

  21. Blanquet-Diot S, Soufi M, Rambeau M, Rock E, Alric M. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J. Nutr. 139: 876–883 (2009)

    Article  CAS  Google Scholar 

  22. Molly K, Vande Woestyne M, De Smet I, Verstraete W. Validation of the simulator of the human intestinal microbial ecosystem (SHIME) reactor using microorganism-associated activities. Microb. Ecol. Health D. 7: 191–200 (1994)

    Article  Google Scholar 

  23. Le Blay G, Chassard C, Baltzer S, Lacroix C. Set up of a new in vitro model to study dietary fructans fermentation in formula-fed babies. Br. J. Nutr. 103: 403–411 (2010)

    Article  Google Scholar 

  24. Champagne CP, Lacroix C, Sodini-Gallot I. Immobilized cell technologies for the dairy industry. Crit. Rev. Biotechnol. 14: 109–134 (1994)

    Article  CAS  Google Scholar 

  25. Doleyres Y, Paquin C, LeRoy M, Lacroix C. Bifidobacterium longum ATCC 15707 cell production during free-and immobilized-cell cultures in MRS-whey permeate medium. Appl. Microbiol. Biot. 60: 168–173 (2002)

    Article  CAS  Google Scholar 

  26. Doleyres Y, Fliss I, Lacroix C. Quantitative determination of the spatial distribution of pure-and mixed-strain immobilized cells in gel beads by immunofluorescence. Appl. Microbiol. Biot. 59: 297–302 (2002)

    Article  CAS  Google Scholar 

  27. Zihler A, Gagnon M, Chassard C, Hegland A, Stevens MJ, Braegger CP, Lacroix C. Unexpected consequences of administering bacteriocinogenic probiotic strains for Salmonella populations, revealed by an in vitro colonic model of the child gut. Microbiology 156: 3342–3353 (2010)

    Article  CAS  Google Scholar 

  28. Le Blay G, Rytka J, Zihler A, Lacroix C. New in vitro colonic fermentation model for Salmonella infection in the child gut. FEMS. Microbiol. Ecol. 67: 198–207 (2009)

    Article  Google Scholar 

  29. Macfarlane S, Dillon JF. Microbial biofilms in the human gastrointestinal tract. J. Appl. Microbiol. 102: 1187–1196 (2007)

    Article  CAS  Google Scholar 

  30. De Boever P, Wouters R, Vermeirssen V, Boon N, Verstraete W. Development of a six-stage culture system for simulating the gastrointestinal microbiota of weaned infants. Microb. Ecol. Health D. 13: 111–123 (2001)

    Article  Google Scholar 

  31. Sghir A, Chow JM, Mackie RI. Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate. J. Appl. Microbiol. 85: 769–777 (1998)

    Article  CAS  Google Scholar 

  32. Macfarlane GT, Macfarlane S, Gibson GR. Validation of a three-stage compound continuous culture system for investigating the effect of retention time on the ecology and metabolism of bacteria in the human colon. Microbial Ecol. 35: 180–187 (1998)

    Article  CAS  Google Scholar 

  33. Macfarlane S, Quigley ME, Hopkins MJ, Newton DF, Macfarlane GT. Polysaccharide degradation by human intestinal bacteria during growth under multi-substrate limiting conditions in a three-stage continuous culture system. FEMS. Microbiol. Ecol. 26: 231–243 (1998)

    Article  CAS  Google Scholar 

  34. Lacroix C, LeBlay G, Cinquin C, Fliss I. In vitro gastrointestinal model system and uses thereof. U.S. Patent 20,040,101,906 (2004)

    Google Scholar 

  35. Child MW, Kennedy A, Walker AW, Bahrami B, Macfarlane S, Macfarlane GT. Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques. FEMS. Microbiol. Ecol. 55: 299–310 (2006)

    Article  CAS  Google Scholar 

  36. Van den Abbeele P, Grootaert C, Marzorati M, Possemiers S, Verstraete W, Gérard P, Rabot S, Bruneau A, El Aidy S, Derrien M, Zoetendal E, Kleerebezem M, Smidt H, Van de Wiele T. Microbial community development in a dynamic gut model is reproducible, colon region specific, and selective for Bacteroidetes and Clostridium cluster IX. Appl. Environ. Microb. 76: 5237–5246 (2010)

    Article  Google Scholar 

  37. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. P. Natl. Acad. Sci. USA 101: 15718–15723 (2004)

    Article  Google Scholar 

  38. Scheppach W. Effects of short chain fatty acids on gut morphology and function. Gut 35: S35–S38 (1994)

    Article  CAS  Google Scholar 

  39. McNeil NI. The contribution of the large intestine to energy supplies in man. Am. J. Clin. Nutr. 39: 338–342 (1984)

    CAS  Google Scholar 

  40. Robert C, Bernalier-Donadille A. The cellulolytic microflora of the human colon: Evidence of microcrystalline cellulose-degrading bacteria in methaneexcreting subjects. FEMS. Microbiol. Ecol. 46: 81–89 (2003)

    Article  CAS  Google Scholar 

  41. Minekus M, Havenaar R. Reactor system. European Patent 0642382 (1998)

    Google Scholar 

  42. Possemiers S, Verthé K, Uyttendaele S, Verstraete W. PCR-DGGE-based quantification of stability of the microbial community in a simulator of the human intestinal microbial ecosystem. FEMS Microbiol. Ecol. 49: 495–507 (2004)

    Article  CAS  Google Scholar 

  43. Kasai C, Sugimoto K, Moritani I, Tanaka J, Oya Y, Inoue H, Tameda M, Shiraki K, Ito M, Takei Y, Takase K. Comparison of the gut microbiota composition between obese and non-obese individuals in a Japanese population, as analyzed by terminal restriction fragment length polymorphism and nextgeneration sequencing. BMC Gastroenterol. 15: 100 (2015)

    Article  Google Scholar 

  44. Moon JS, Shin SY, Choi HS, Joo W, Cho SK, Li L, Kang JH, Kim TJ, Han NS. In vitro digestion and fermentation properties of linear sugar-beet arabinan and its oligosaccharides. Carbohyd. Polym. 131: 50–56 (2015)

    Article  CAS  Google Scholar 

  45. Song Y, Liu C, Finegold SM. Real-time PCR quantitation of clostridia in feces of autistic children. Appl. Environ. Microb. 70: 6459–6465 (2004)

    Article  CAS  Google Scholar 

  46. De Boever P, Deplancke B, Verstraete W. Fermentation by gut microbiota cultured in a simulator of the human intestinal microbial ecosystem is improved by supplementing a soygerm powder. J. Nutr. 130: 2599–2606 (2000)

    Google Scholar 

  47. Kempermana RA, Gross G, Mondot S, Possemiers S, Marzorati M, van de Wiele T, Doré J, Vaughan EE. Impact of polyphenols from black tea and red wine/grape juice on a gut model microbiome. Food Res. Int. 53: 659–669 (2013)

    Article  Google Scholar 

  48. Pompei A, Cordisco L, Raimondi S, Amaretti A, Pagnoni UM, Matteuzzi D, Rossi M. In vitro comparison of the prebiotic effects of two inulin-type fructans. Anaerobe 14: 280–286 (2008)

    Article  Google Scholar 

  49. Duncan SH, Louis P, Thomson JM, Flint HJ. The role of pH in determining the species composition of the human colonic microbiota. Environ. Microbiol. 11: 2112–2122 (2009)

    Article  Google Scholar 

  50. Maccaferri S, Vitali B, Klinder A, Kolida S, Ndagijimana M, Laghi L, Calanni F, Brigidi P, Gibson GR, Costabile A. Rifaximin modulates the colonic microbiota of patients with Crohn’s disease: An in vitro approach using a continuous culture colonic model system. J. Antimicrob. Chemother. 65: 2556–2565 (2010)

    Article  CAS  Google Scholar 

  51. Blanquet-Diot S, Soufi M, Rambeau M, Rock E, Alric M. Digestive stability of xanthophylls exceeds that of carotenes as studied in a dynamic in vitro gastrointestinal system. J. Nutr. 139: 876–883 (2009)

    Article  CAS  Google Scholar 

  52. Moon JS, Joo W, Li L, Choi HS, Han NS. In vitro digestion and fermentation of sialyllactoses by infant gut microflora. J. Funct. Foods 21: 497–506 (2016)

    Article  CAS  Google Scholar 

  53. Rycroft CE, Jones MR, Gibson GR, Rastall RA. A comparative in vitro evaluation of the fermentation properties of prebiotic oligosaccharides. J. Appl. Microbiol. 91: 878–887 (2001)

    Article  CAS  Google Scholar 

  54. Hidalgo M, Oruna-Concha MJ, Kolida S, Walton GE, Kallithraka S, Spencer JP, de Pascual-Teresa S. Metabolism of anthocyanins by human gut microflora and their influence on gut bacterial growth. J. Agr. Food Chem. 60: 3882–3890 (2012)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nam Soo Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J.S., Li, L., Bang, J. et al. Application of in vitro gut fermentation models to food components: A review. Food Sci Biotechnol 25 (Suppl 1), 1–7 (2016). https://doi.org/10.1007/s10068-016-0091-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0091-x

Keywords