Skip to main content

Inhibitory effects of mung bean (Vigna radiata L.) seed and sprout extracts on melanogenesis

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Inhibitory effect against melanogenesis and the in vitro tyrosinase inhibitory activity of ethyl acetate (EtOAc) and methylene chloride fractions of 80% methanol extracts of mung bean (Vigna radiata L.) seeds and sprouts were determined. EtOAc extract fractions from mung bean sprouts germinated for 12 h (33.5%), 1 day (56.5%), and 2 days (47.9%) inhibited melanogenesis more effectively than arbutin (16.3%). The in vitro tyrosinase inhibitory activity was higher in an EtOAc extract fraction from mung bean sprouts germinated for 2 days (70.5%). EtOAc extract fractions from mung bean sprouts germinated for 1 day showed excellent whitening effects due to the flavone vitexin. Extracts from mung bean sprouts germinated for 1 day can be used as a novel whitening cosmeceutical ingredient.

This is a preview of subscription content, access via your institution.

References

  1. Kim AR, Park SA, Ha JH, Park SN. Antioxidative and inhibitory activities on melanogenesis of Vitex negundo L. leaf extract. Microbiol. Biotechnol. Lett. 41: 135–144 (2013)

    CAS  Google Scholar 

  2. Ando H, Niki Y, Ito M, Akiyama K, Matsui MS, Yarosh DB, Ichihashi M. Melanosomes are transferred from melanocyte to keratinocytes through the processes of packaging, release, uptake, and dispersion. J. Invest. Dermatol. 132: 1222–1229 (2012)

    Article  CAS  Google Scholar 

  3. Seiberg M. Keratinocyte-melanocyte interaction during melanosome transfer. Pigm. Cell Res. 14: 236–242 (2001)

    Article  CAS  Google Scholar 

  4. Ito S, Wakamatsu K. Quantitative analysis of eumelanin and pheomelanin in humans, mice, and other animals: A comparative review. Pigm. Cell Res. 16: 523–531 (2003)

    Article  Google Scholar 

  5. Marmol V, Veermann F. Tyrosinase and related proteins in mammalian pigmentation. FEBS Lett. 381: 165–168 (1996)

    Article  Google Scholar 

  6. Park SA, Park J, Park CI, Jie YJ, Hwang YC, Kim YH, Jeon SH, Lee HM, Ha JH, Kim KJ, Park SN. Cellular antioxidant activity and whitening effects of Dendropanax morbiferaleaf extracts. Microbiol. Biotechnol. Lett. 41: 407–415 (2013)

    CAS  Google Scholar 

  7. Iwata M, Corn T, Iwata S, Everett MA, Fuller BB. The relationship between tyrosinase activity and skin color in human foreskins. J. Invest. Dermatol. 95: 9–15 (1990)

    Article  CAS  Google Scholar 

  8. Kameyama K, Takemura T, Hamada Y, Sakai C, Kondoh S, Nishiyama S. Pigment production in murine melanomacells is regulated by tyrosinase, tyrosinaserelated protein 1 (TRP), dopachrome tautomerase (TRP 2) and a melanogenic inhibitor. J. Invest. Dermatol. 100: 126–131 (1993)

    Article  CAS  Google Scholar 

  9. Seo EJ, Hong ES, Choi MH, Kim KS, Lee SJ. Antioxidant and skin whitening effects of Rhamnus yoshinoi extracts. Korean J. Food Sci. Technol. 42: 750–754 (2010)

    Google Scholar 

  10. Seo H, Seo GY, Ko SZ, Park YH. Inhibitory effects of ethanol extracts from Polygoni multiflori radix and Cynanchi wilfordii radix on melanogenesis in melanoma cells. J. Korean Soc. Food Sci. Nutr. 40: 1086–1091 (2011)

    Article  CAS  Google Scholar 

  11. Weixiong L, Helene ZH. Induced melanin reduces mutations and cell killing in mouse melanoma. Photochem. Photobiol. 65: 480–485 (1997)

    Article  Google Scholar 

  12. Choi BW, Lee BH, Kang KJ, Lee ES, Lee NH. Screening of the tyrosinase inhibitorys from marine algae and medicinal plants. Nat. Prod. Sci. 29: 237–242 (1998)

    Google Scholar 

  13. Hill HZ, Li W, Xin P, Mitchell DL. Melanin: A two edged sword. Pigm. Cell. Res. 10: 158–161 (1997)

    Article  CAS  Google Scholar 

  14. Matsusukami M. Evaluation of antimelanogenic effect. Fragrance 19: 14–19 (1995)

    Google Scholar 

  15. Jo NR, Park MA, Chae KY, Park SA, Jeon SH, Ha JH, Park SN. Cellular protective and antioxidative acivities of Parthenocissus tricuspidata stem extracts. J. Soc. Cosmet. Sci. Korea 38: 225–236 (2012)

    Google Scholar 

  16. Park SN. Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I). Appl. Chem. Eng. 14: 657–665 (2003)

    CAS  Google Scholar 

  17. Scharffetter-Kochanek K. Photoaging of the connective tissues of skin: Its prevention and therapy, antioxidants in disease mechanism and therapy. Adv. Pharmacol. 38: 639–655 (1997)

    Article  CAS  Google Scholar 

  18. Jeong SJ, Kang TH, Ko EB, Kim YC. Flavonoids from the seeds of Phaseolus radiates. Nat. Prod. Sci. 29: 357–359 (1998)

    CAS  Google Scholar 

  19. Seo IA. Studies on cosmeceutical of Phaseolus radiates. MS Thesis, Daegu Haany University, Gyeongsan, Korea (2010)

    Google Scholar 

  20. Jom KN, Frank T, Engel KH. A metabolite profiling approach to follow the sprouting process of mung beans (Vigna radiata). Metabolomics 7: 102–117 (2011)

    Article  CAS  Google Scholar 

  21. Fery FL. New opportunities in Vigna. pp. 424–428. In: Trends in new crops and new uses. Janick, J, Whipkey A (eds). ASHS Press, Alexandria, VA, USA (2002)

    Google Scholar 

  22. Tang D, Dong Y, Ren H, Li L, He C. A review of phytochemistry, metabolite changes, and medicinal uses of the common food mung bean and its sprouts (Vigna radiata). Chem. Cent. J. 8: 4–12 (2014)

    Article  Google Scholar 

  23. Kanatt SR, Arjun K, Sharma A. Antioxidant and antimicrobial activity of legume hulls. Food Res. Int. 44: 3182–3187 (2011)

    Article  CAS  Google Scholar 

  24. Randhir R, Lin Y-T, Shetty K. Stimulation of phenolics, antioxidant and antimicrobial activities in dark germinated mung bean sprouts in response to peptide and phytochemical elicitors. Process Biochem. 39: 637–646 (2004)

    Article  CAS  Google Scholar 

  25. Vanamala J, Reddivari L, Yoo KS, Pike LM, Patil BS. Variation in the content of bioactive flavonoids in different brands of orange and grapefruit juices. J. Food Compos. Anal. 19: 157–166 (2006)

    Article  CAS  Google Scholar 

  26. Anjum NA, Umar S, Iqbal M, Khan NA. Cadmium causes oxidative stress in mung bean by affecting the antioxidant enzyme system and ascorbate glutathione cycle metabolism. Russ. J. Plant Physl. 58: 92–99 (2011)

    Article  CAS  Google Scholar 

  27. El-Adawy T, Rahma E, El-Bedawey A, El-Beltagy A. Nutritional potential and functional properties of germinated mung bean, pea and lentil seeds. Plant Food. Hum. Nutr. 58: 1–13 (2003)

    Article  Google Scholar 

  28. Yao Y, Cheng X, Wang L, Wang S, Ren G. Mushroom tyrosinase inhibitors from mung bean (Vigna radiatae L.) extracts. Int. J. Food Sci. Nutr. 63: 358–361 (2012)

    Article  CAS  Google Scholar 

  29. Soucek J, Skvor J, Pouckova P, Matougek J, Slavik T, Matousek J. Mung bean sprouts (Phaseolus aureus) nuclease and its biological and antitumor effects. Neoplasma 53: 402–409 (2006)

    CAS  Google Scholar 

  30. Randhir R, Shetty K. Mung beans processed by solid-state bioconversion improves phenolic content and functionality relevant for diabetes and ulcer management. Innov. Food Sci. Emerg. 8: 197–204 (2007)

    Article  CAS  Google Scholar 

  31. Yao Y, Ren G, Wang JS, Chen F, Wang MF. Antidiabetic of mung bean extracts in diabetic KK-Ay mice. J. Agr. Food. Chem. 56: 8869–8873 (2008)

    Article  CAS  Google Scholar 

  32. Hosoi J, Abe E, Suda T, Kuroki T. Regulation of melanin synthesis of B16 mouse melanoma cell by 1a, 25-dihydroxyvitamin D3 and retinoic acid. Cancer Res. 45: 1474–1478 (1985)

    CAS  Google Scholar 

  33. Han SB, Kwon SS, Kong BJ, Kim KJ, Park SN. Antioxidative effect and tyrosinase inhibitory activity of the unripened fruit extract of Rubus coreanus Miquel. J. Soc. Cosmet. Sci. Korea. 39: 295–302 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo Nam Park.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jeong, Y., Ha, J., Noh, G. et al. Inhibitory effects of mung bean (Vigna radiata L.) seed and sprout extracts on melanogenesis. Food Sci Biotechnol 25, 567–573 (2016). https://doi.org/10.1007/s10068-016-0079-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0079-6

Keywords

  • mung bean
  • sprout
  • vitexin
  • isovitexin
  • whitening effect