Skip to main content

Advertisement

Log in

Optimization of spray drying parameters for pink guava powder using RSM

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The optimization of pink guava was executed using central composite face-centred design to optimize the spray drying parameters of inlet temperature, maltodextrin concentration (MDC) and feed flow (FF). The experimental results were significantly (p<0.01) fitted into second-order polynomial models to describe and predict the response quality in terms of the final moisture, particle size and lycopene with R 2 of 0.9749, 0.9616, and 0.9505, respectively. The final moisture content significantly (p<0.01) decreased with increasing inlet temperature and MDC, whereas the particle size increased. In contrast, the lycopene content significantly (p<0.01) decreased with the higher temperature and increased with increasing MDC. However, according to multiple response optimization, the optimum conditions of 150°C inlet temperature, 17.12% (w/v) MDC and 350 mL/h FF-predicted 3.10% moisture content, 11.23 μm particle size and 58.71 mg/100 g lycopene content. The experimental observation satisfied the predicted model within the acceptable range of the responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Abreu JR, Santos CD, Abreu CMP, Corrêa AD, Lima LCO. Sugar fractionation and pectin content during the ripening of guava cv. Pedro Sato. Food Sci. Technol. (Campinas) 32: 156–162 (2012)

    Article  Google Scholar 

  2. Yadava UL. Guava production in Georgia under cold-protection structure. pp. 451–457. In: Progress in New Crops. Janick J (ed). ASHS Press, Arlington, VA, USA (1996)

    Google Scholar 

  3. Flores G, Wua S, Negrin A, Kennelly EJ. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem. 170: 327–335 (2015)

    Article  CAS  Google Scholar 

  4. Mercadante AZ, Steck A, Pfander H. Carotenoids from guava (Psidium guajava L): Isolation and structure elucidation. J. Agr. Food Chem. 47: 145–151 (1999)

    Article  CAS  Google Scholar 

  5. Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J. Critical Review: Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. J. Food Compos. Anal. 21: 445–463 (2008)

    Article  CAS  Google Scholar 

  6. Flores G, Dastmalchi K, Wu SB, Whalen K, Dabo AJ, Reynertson KA. Phenolicrich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem. 141: 889–895 (2013)

    CAS  Google Scholar 

  7. Ojowole JAO. Anti-inflammatory and analgesic effects of Psidium guajava Linn (Myrtaceae) leaf aqueous extract in rats and mice. Method. Find. Exp. Clin. 28: 441–446 (2006)

    Article  Google Scholar 

  8. Shrestha AK, Ua-Arak T, Adhikari BR, Howes T, Bhandari BR. Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT). Int. J. Food Prop. 10: 661–673 (2007)

    Article  CAS  Google Scholar 

  9. Martinelli L, Gabas AL, Romero JT. Thermodynamic and quality properties of lemon juice powder as affected by maltodextrin and arabic gum. Dry. Technol. 25: 2035–2045 (2007)

    Article  CAS  Google Scholar 

  10. Kha TC, Nguyen MN, Roach PD. Effects of spray drying conditions on the physicochemical and antioxidant properties of the gac (momordica cochinchinensis) fruit aril powder. J. Food Eng. 98: 385–392 (2010)

    Article  CAS  Google Scholar 

  11. Anekella K, Orsat V. Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT-Food Sci. Technol. 50: 17–24 (2013)

    Article  CAS  Google Scholar 

  12. Mishraa P, Mishrab S, Mahantaa CL. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (emblica officinalis) juice powder. Food Bioprod. Process. 92: 252–258 (2014)

    Article  Google Scholar 

  13. Cabral ACS, Said S, Oliveira WP. Retention of the enzymatic activity and product properties during spray drying of pineapple stem extract in presence of maltodextrin. Int. J. Food Prop. 12: 536–548 (2009)

    Article  CAS  Google Scholar 

  14. Tonon RV, Brabet C, Hubinger MD. Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 88: 411–418 (2008)

    Article  Google Scholar 

  15. Hong JH, Choi YH. Physico-chemical properties of protein-bound polysaccharide from Agaricus blazei Murill prepared by ultrafiltration and spray drying process. Int. J. Food Sci. Technol. 42: 1–8 (2007)

    Article  CAS  Google Scholar 

  16. Cai YZ, Corke H. Production and properties of spray-dried amaranthus betacyanin pigments. J. Food Sci. 65: 1248–1252 (2000)

    Article  CAS  Google Scholar 

  17. Quek SY, Chok NK, Swedlund P. The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. 46: 386–392 (2007)

    Article  CAS  Google Scholar 

  18. Goula AM, Adamopoulos KG, Kazakis NA. Influence of spray drying conditions on tomato powder properties. Dry. Technol. 22: 1129–1151 (2004)

    Article  Google Scholar 

  19. Patil V, Chauhan AK, Singh RP. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technol. 253: 230–236 (2014)

    Article  CAS  Google Scholar 

  20. Kong KW, Ismail A, Tan CP, Rajab NF. Optimization of oven drying conditions for lycopene content and lipophilic antioxidant capacity in a by-product of the pink guava puree industry using response surface methodology. LWT-Food Sci. Technol. 43: 729–735 (2010)

    Article  CAS  Google Scholar 

  21. Nora CD, Muller CD, Bona GS, Rios AO, Hertz PF, Jablonski A, Jong EV, Flores SH. Effect of processing on the stability of bioactive compounds from red guava (Psidium cattleyanum Sabine) and guabiju (Myrcianthes pungens). J. Food Compos. Anal. 34: 18–25 (2014)

    Article  Google Scholar 

  22. Kim SO, Ha TVA, Choi YJ, Ko S. Optimization of homogenization–evaporation process for lycopene nanoemulsion production and its beverage applications. J. Food Sci. 79: 1604–1610 (2014)

    Article  Google Scholar 

  23. Atalar I, Dervisoglu M. Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT-Food Sci. Technol. 60: 751–757 (2015)

    Article  CAS  Google Scholar 

  24. Ilaiyaraja N, Likhith KR, Babu GRS, Khanum F. Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM). Food Chem. 173: 348–354 (2015)

    Article  CAS  Google Scholar 

  25. Myers RH, Montgomery DC. Response surface methodology: Process and product optimization using designed experiments. John Wiley and Sons, Inc., Hoboken, NJ, USA. p. 704 (2002)

    Google Scholar 

  26. Somayajula A, Asaithambi P, Susree M, Matheswaran M. Sonoelectrochemical oxidation for decolorization of Reactive Red 195. Ultrason. Sonochem. 19: 803–811 (2012)

    Article  CAS  Google Scholar 

  27. Carrillo-Navas H, González-Rodea DA, Cruz-Olivares J, Barrera-Pichardo JF, Román-Guerrero A, Pérez-Alonso C. Storage stability and physicochemical properties of passion fruit juice microcapsules by spray-drying. Rev. Mex. Ing. Quim. 10: 421–430 (2011)

    CAS  Google Scholar 

  28. AOAC. Official methods of analysis of AOAC. 15th ed. Method 9 34.01. Association of Official Analytical Chemists, Gaithersburg, MD, USA (1990)

  29. Tze NL, Han CP, Yusof YA. Ling CN, Talib RA, Taip FS, Aziz MG. Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Sci. Biotechnol. 21: 675–682 (2012)

    Article  CAS  Google Scholar 

  30. Sommano S, Caffin N, Mcdonal J, Cocksedge R. The impact of thermal processing on bioactive compounds in Australian native food products (bush tomato and Kakadu plum). Food Res. Int. 50: 557–561 (2013)

    Article  CAS  Google Scholar 

  31. Heredia A, Peinado I, Rosa E, Andrés A. Effect of osmotic pre-treatment and microwave heating on lycopene degradation and isomerization in cherry tomato. Food Chem. 123: 92–98 (2010)

    Article  CAS  Google Scholar 

  32. Anguelova T, Warthesen J. Lycopene stability in tomato powders. J. Food Sci. 65: 67–70 (2000)

    Article  CAS  Google Scholar 

  33. Design-expert. Design of expert, Version, 7.1.5. State-Ease, Inc., Minneapolis, MN, USA (2008)

  34. Manivannan P, Rajasimman M. Optimization of process parameters for the osmotic dehydration of beetroot in sugar solution. J. Food Process Eng. 34: 804–825 (2011)

    Article  Google Scholar 

  35. Barbosa-Canovas GV, Harte F, Yan HH. Particle size distribution in food powders. Food Eng. 1: 303–328 (2012)

    Google Scholar 

  36. Nijdam JJ, Langrish TAJ. The effect of surface composition on the functional properties of milk powders. J. Food Eng. 77: 919–925 (2006)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farah Saleena Taip.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam Shishir, M.R., Taip, F., Aziz, N. et al. Optimization of spray drying parameters for pink guava powder using RSM. Food Sci Biotechnol 25, 461–468 (2016). https://doi.org/10.1007/s10068-016-0064-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0064-0

Keywords