Skip to main content
Log in

Effects of exogenous abscisic acid on phenolic characteristics of red Vitis vinifera grapes and wines

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effects of exogenous abscisic acid (ABA) on phenolic characteristics of grapes and wines were investigated in Vitis vinifera cvs. Merlot and Cabernet Sauvignon. Exogenous ABA treatment at veraison significantly improved phenolic contents, mainly anthocyanins and flavonols, and antioxidant properties of the grape skins, but had no effects on total phenolics and antioxidant activities in the seeds or on basic fruit qualities. The wines made from ABA-treated grapes were also consequently enhanced in total phenolics, anthocyanins, flavonols and antioxidant activities. The proportions of methylated anthocyanins in the skins and acylated anthocyanins and derived pigments in the wines were decreased to some degree by exogenous ABA treatment. No distinct relationships were observed between ABA concentrations and phenolic characteristics, and the effects were observed even with 200 mg/L ABA. The results revealed that exogenous ABA applied at veraison offered opportunities to improve phenolic contents and nutritional values of grape skins and wines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Flamini R, Mattivi F, Rosso MD, Arapitsas P, Bavaresco L. Advanced knowledge of three important classes of grape phenolics: Anthocyanins, stilbenes and flavonols. Int. J. Mol. Sci. 14: 19651–19669 (2013)

    Article  CAS  Google Scholar 

  2. Asen S, Stewart RN, Norris KH. Co-pigmentation of anthocyanins in plant tissues and its effects on colour. Phytochemistry 11: 1139–1144 (1972)

    Article  CAS  Google Scholar 

  3. Chira K, Pacella N, Jourdes M, Teissedre P-L. Chemical and sensory evaluation of Bordeaux wines (Cabernet-Sauvignon and Merlot) and correlation with wine age. Food Chem. 126: 1971–1977 (2011)

    Article  CAS  Google Scholar 

  4. Ribichaud JL, Noble AC. Astringency and bitterness of selected phenolics in wines. J. Sci. Food Agr. 53: 343–353 (1990)

    Article  Google Scholar 

  5. Katalinic V, Možina SS, Skroza D, Generalic I, Abramoviè H, Miloš M, Ljubenkov I, Piskernik S, Pezo I, Terpinc P, Boban M. Polyphenolic profile, antioxidant properties and antimicrobial activity of grape skin extracts of 14 Vitis vinifera varieties grown in Dalmatia (Croatia). Food Chem. 119: 715–723 (2010)

    Article  CAS  Google Scholar 

  6. Leibowitz A, Faltin Z, Perl A, Eshdat Y, Hagay Y, Peleg E, Grossman E. Red grape berry-cultured cells reduce blood pressure in rats with metabolic-like syndrome. Eur. J. Nutr. 53: 973–980 (2014)

    Article  CAS  Google Scholar 

  7. Pezzuto JM. Grapes and human health: A perspective. J. Agr. Food Chem. 56: 6777–6784 (2008)

    Article  CAS  Google Scholar 

  8. Deytieux C, Gagné S, L’Hyvernay A, Donèche B, Geny L. Possible roles of both abscisic acid and indol-acetic acid in controlling grape berry ripening process. J. Int. Sci. Vigne. Vin. 41: 141–148 (2007)

    Google Scholar 

  9. Leung J, Giraudat J. Abscisic acid signal transduction. Annu. Rev. Plant Biol. 49: 199–222 (1998)

    Article  CAS  Google Scholar 

  10. Peppi MC, Fidelibus MW, Dokoozlian N. Abscisic acid application timing and concentration affect firmness, pigmentation, and color of ‘Flame Seedless’ grapes. HortScience 41: 1440–1445 (2006)

    CAS  Google Scholar 

  11. Jeong ST, Goto-Yamamoto N, Kobayashi S, Esaka M. Effects of plant hormones and shading on the accumulation of anthocyanins and the expression of anthocyanin biosynthetic genes in grape berry skins. Plant Sci. 167: 247–252 (2004)

    Article  CAS  Google Scholar 

  12. Zhu L, Zhang Y-L, Deng J-J, L H-R, Lu J. Phenolic concentrations and antioxidant properties of wines made from North American grapes grown in China. Molecules 17: 3304–3323 (2012)

    Article  CAS  Google Scholar 

  13. Cliff MA, King MC, Schlosser J. Anthocyanin, phenolic composition, colour measurement and sensory analysis of BC commercial red wines. Food Res. Int. 40: 92–100 (2007)

    Article  CAS  Google Scholar 

  14. Xu C-M, Zhang Y-L, Cao L, Lu J. Phenolic compounds and antioxidant properties of different grape cultivars grown in China. Food Chem. 119: 1557–1565 (2010)

    Article  CAS  Google Scholar 

  15. Jin Z-M, He J-J, Bi H-Q, Cui X-Y, Duan C-Q. Phenolic compound profiles in berry skins from nine red wine grape cultivars in northwest China. Molecules 14: 4922–4935 (2009)

    Article  CAS  Google Scholar 

  16. Singleton VL, Rossi Jr. JA. Colorimetry of total phenolics with phosphomolybdicphosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158 (1965)

    CAS  Google Scholar 

  17. Benzie IFF, Strain JJ. Ferric reducing ability of plasma (FRAP) as a measure of antioxidant power: The FRAP assay. Anal. Biochem. 239: 70–76 (1996)

    Article  CAS  Google Scholar 

  18. Li Z, Pan Q-H, Jin ZM, Mu L, Duan C-Q. Comparison on phenolic compounds in Vitis vinifera cv. Cabernet Sauvignon wines from five wine-growing regions in China. Food Chem. 125: 77–83 (2011)

    CAS  Google Scholar 

  19. Xu C, Zhang Y-L, Zhu L, Huang Y, Lu, J. Influence of growing season on phenolic compounds and antioxidant properties of grape berries from vines grown in subtropical climate. J. Agr. Food Chem. 59: 1078–1086 (2011)

    Article  CAS  Google Scholar 

  20. Sandhu AK, Gray DJ, Lu J, Gu L. Effects of exogenous abscisic acid on antioxidant capacities, anthocyanins, and flavonol contents of muscadine grape (Vitis rotundifolia) skins. Food Chem. 126: 982–988 (2011)

    Article  CAS  Google Scholar 

  21. Lacampagne S, Gagné S, Gény L. Involvement of abscisic acid in controlling the proanthocyanidin biosynthesis pathway in grape skin: New elements regarding the regulation of tannin composition and leucoanthocyanidin reductase (LAR) and anthocyanidin reductase (ANR) activities and expression. J. Plant Growth. Regul. 29: 81–90 (2010)

    Article  CAS  Google Scholar 

  22. Owen SJ, Lafond MD, Bowen P, Bogdanoff C, Usher K, Abrams SR. Profiles of abscisic acid and its catabolites in developing Merlot grape (Vitis vinifera) berries. Am. J. Enol. Viticult. 60: 277–284 (2009).

    CAS  Google Scholar 

  23. Peppi MC, Fidelibus MW, Dokoozlian NK. Application timing and concentration of abscisic acid affect the quality of ‘Redglobe’ grapes. J. Hortic. Sci. Biotech. 82: 304–310 (2007)

    Article  CAS  Google Scholar 

  24. Peppi MC, Fidelibus MW, Dokoozlian NK. Timing and concentration of abscisic acid applications affect the quality of ‘Crimson Seedless’ grapes. Int. J. Fruit. Sci. 7: 71–83 (2007)

    Article  Google Scholar 

  25. Sandhu AK, Gu LW. Antioxidant capacity, phenolic content, and profiling of phenolic compounds in the seeds, skin, and pulp of Vitis rotundifolia (Muscadine Grapes) as determined by HPLC-DAD-ESI-MS. J. Agr. Food Chem. 58: 4681–4692 (2010)

    Article  CAS  Google Scholar 

  26. Ban T, Ishimaru M, Kobayashi S, Shiozaki S, Goto-Yamamoto N, Horiuchi S. Abscisic acid and 2,4-dichlorophenoxyacetic acid affect the expression of anthocyanin biosynthetic pathway genes in ‘Kyoho’ grape berries. J. Hortic. Sci. Biotech. 78: 586–589 (2003)

    Article  CAS  Google Scholar 

  27. Peppi MC, Walker MA, Fidelibus MW. Application of abscisic acid rapidly upregulated UFGT gene expression and improved color of grape berries. Vitis 47: 11–14 (2008)

    CAS  Google Scholar 

  28. Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, Fitz Gerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Demattè L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One 2: e1326 (2007)

    Article  Google Scholar 

  29. Hugueney P, Provenzano S, Verriès C, Ferrandino A, Meudec E, Batelli G, Merdinoglu D, Cheynier V, Schubert A, Ageorges A. A novel cation-dependent O-methyltransferase involved in anthocyanin methylation in grapevine. Plant Physiol. 150: 2057–2070 (2009)

    Article  CAS  Google Scholar 

  30. Figueiredo-González M, Martínez-Carballo E, Cancho-Grande B, Santiago JL, Martínez MC, Simal-Gándara J. Pattern recognition of three Vitis vinifera L. red grapes varieties based on anthocyanin and flavonol profiles, with correlations between their biosynthesis pathways. Food Chem. 130: 9–19 (2012)

    Google Scholar 

  31. Koyama K, Sadamatsu K, Goto-Yamamoto N. Abscisic acid stimulated ripening and gene expression in berry skins of the Cabernet Sauvignon grape. Funct. Integr. Genomic. 10: 367–381 (2010)

    Article  CAS  Google Scholar 

  32. Luan L-Y, Zhan, Z-W, Xi Z-M, Huo S-S, Ma L-N. Comparing the effects of exogenous abscisic acid on the phenolic composition of Yan 73 and Cabernet Sauvignon (Vitis vinifera L.) wines. Eur. Food Res. Technol. 239: 203–213 (2014)

    Article  CAS  Google Scholar 

  33. Braidot E, Zancani M, Petrussa E, Peresson C, Bertolini A, Patui S, Macrì F, Vignello, A. Transport and accumulation of flavonoids in grapevine (Vitis vinifera L.). Plant Signal Behav. 3: 626–632 (2008)

    Article  Google Scholar 

  34. Boss PK, Davies C, Robinson SP. Analysis of the expression of anthocyanin pathway genes in developing Vitis vinifera L. cv Shiraz grape berries and the implications for pathway regulation. Plant Physiol. 111: 1059–1066 (1996)

    CAS  Google Scholar 

  35. Ramazzotti S, Filippetti I, Intrieri C. Expression of genes associated with anthocyanin synthesis in red-purplish, pink, pinkish-green and green grape berries from mutated ‘Sangiovese’ biotypes: A case study. Vitis 47: 147–151 (2008)

    CAS  Google Scholar 

  36. Boss PK, Davies C, Robinson SP. Expression of anthocyanin biosynthesis pathway genes in red and white grapes. Plant Mol. Biol. 32: 565–569 (1996)

    Article  CAS  Google Scholar 

  37. Bogs J, Jaffe FW, Takos AM, Walker AR, Robinson SP. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiol. 143: 1347–1361 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiang Lu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, L., Zhang, Y., Zhang, W. et al. Effects of exogenous abscisic acid on phenolic characteristics of red Vitis vinifera grapes and wines. Food Sci Biotechnol 25, 361–370 (2016). https://doi.org/10.1007/s10068-016-0051-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0051-5

Keywords

Navigation