Skip to main content
Log in

The hypoglycemic effect of fermented Pueraria thunbergiana extract in streptozotocin-induced diabetic mice

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the effect of fermented and non-fermented Pueraria thunbergiana extract (FPE and PE, respectively) on postprandial hyperglycemia in streptozotocin-induced diabetic mice. FPE was prepared by fermentation of P. thunbergiana with Bifidobacterium breve K-111 followed by methanol extraction. FPE’s inhibitory activity against α-glucosidase and α-amylase was significantly higher than that of PE with IC50 values of 0.15 and 0.10 and 0.23 and 0.44 mg/mL for FPE and PE, respectively. The increase in postprandial blood glucose levels was significantly higher in FPE- than in PE-treated diabetic mice. Furthermore, FPE significantly lowered the incremental area under the curve (AUC) in the diabetic mice; the AUC in the normal mice corroborated FPE’s hypoglycemic effect. The results from this study suggest that FPE, more than PE, may help decrease postprandial hyperglycemia by inhibiting α-glucosidase and a-amylase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hirsch IB, McGill JB, Cryer PE, White PF. Perioperative management of surgical patients with diabetes mellitus. Anesthesiology 74: 346–359 (1991)

    Article  CAS  Google Scholar 

  2. Grover JK, Vats V, Rathi SS. Anti-hyperglycemic effect of Eugenia jambolana and Tinospora cordifolia in experimental diabetes and their effects on key metabolic enzymes involved in carbohydrate metabolism. J. Ethnopharmacol. 73: 461–470 (2000)

    Article  CAS  Google Scholar 

  3. Nishikawa T, Edelstein D, Du XL, Yamagishi S, Matsumura T, Kaneda Y, Yorek MA, Beebe D, Oates PJ, Hammes HP, Giardino I, Brownlee M. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 404: 787–790 (2000)

    Article  CAS  Google Scholar 

  4. Cavalot F, Pagliarino A, Valle M, Di Martino L, Bonomo K, Massucco P, Anfossi G, Trovati M. Postprandial blood glucose predicts cardiovascular events and all-cause mortality in type 2 diabetes in a 14-year follow-up: Lessons from the San Luigi Gonzaga Diabetes Study. Diabetes Care 34: 2237–2243 (2011)

    Article  Google Scholar 

  5. Woerle HJ, Neumann C, Zschau S, Tenner S, Irsigler A, Schirra J, Gerich JE, Göke B. Impact of fasting and postprandial glycemia on overall glycemic control in type 2 diabetes Importance of postprandial glycemia to achieve target HbA1c levels. Diabetes Res. Clin. Pr. 77: 280–285 (2007)

    Article  CAS  Google Scholar 

  6. Bhandari MR, Jong-Anurakkun N, Hong G, Kawabata J. α-Glucosidase and α-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergeniaciliata, Haw.). Food Chem. 106: 247–252 (2008)

    Article  CAS  Google Scholar 

  7. Lebovitz HE. Treating hyperglycemia in type 2 diabetes: New goals and strategies. Cleve. Clin. J. Med. 69: 809–820 (2002)

    Article  Google Scholar 

  8. Carroll MF, Gutierrez A, Castro M, Tsewang D, Schade DS. Targeting postprandial hyperglycemia: A comparative study of insulinotropic agents in type 2 diabetes. J. Clin. Endocrinol. Metab. 88: 5248–5254 (2003)

    Article  CAS  Google Scholar 

  9. Fonseca V. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr. Med. Res. Opin. 19: 635–641 (2003)

    Article  Google Scholar 

  10. Li Y, Wen S, Kota BP, Peng G, Li GQ, Yamahara J, Roufogalis BD. Punicagranatum flower extract, a potent a-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J. Ethnopharmacol. 99: 239–244 (2005)

    Article  Google Scholar 

  11. Matsui T, Tanaka T, Tamura S, Toshima A, Miyata Y, Tanaka K, Matsumoto K. a-Glucosidase inhibitory profile of catechins and theaflavins. J. Agr. Food Chem. 55: 99–105 (2007)

    Article  CAS  Google Scholar 

  12. Wang X, Wu J, Chiba H, Umegaki K, Yamada K, Ishimi Y. Puerariae radix prevents bone loss in ovariectomized mice. J. Bone Miner. Metab. 21: 268–275 (2003)

    Article  CAS  Google Scholar 

  13. Keung WM, Vallee BL. Kudzu root: An ancient Chinese source of modern antidipsotropic agents. Phytochemistry 47: 499–506 (1998)

    Article  CAS  Google Scholar 

  14. Park WS, Kwon O, Yoon TJ, Chung JH. Anti-graying effect of the extract of Pueraria thunbergiana via upregulation of cAMP/MITF-M signaling pathway. J. Dermatol. Sci. 75: 153–155 (2014)

    Article  CAS  Google Scholar 

  15. Kim IT, Park YM, Shin KM, Ha J, Choi J, Jung HJ, Park HJ, Lee KT. Antiinflammatory and anti-nociceptive effects of the extract from Kalopanax pictus, Pueraria thunbergiana and Rhus verniciflua. J. Ethnopharmacol. 94: 165–73 (2004)

    Article  Google Scholar 

  16. Park JH, Lee YH, Cho JK, Lee CH. Effects of puerariae radix root water extracts on the antioxidative activity in rats. Korean J. Food Sci. Ani. Resour. 19: 65–71 (1999)

    Google Scholar 

  17. Prasain JK, Jones K, Kirk M, Wilson L, Smith-Johnson M, Weaver C, Barnes SJ. Profiling and quantification of isoflavonoids in kudzu dietary supplements by high-performance liquid chromatography and electrospray ionization tandem mass spectrometry. J. Agr. Food Chem. 51: 4213–4218 (2003)

    Article  CAS  Google Scholar 

  18. Kim DH, Yu KU, Bae EA, Han MJ. Metabolism of puerarin and daidzinbyhuman intestinal bacteria and their relation to in vitro cytotoxicity. Biol. Pharm. Bull. 21: 628–630 (1998)

    Article  CAS  Google Scholar 

  19. Watanabe J, Kawabata J, Kurihara H, Niki R. Isolation and identification of alpha-glucosidase inhibitors from tochucha (Eucommiaulmoides). Biosci. Biotech. Bioch. 61: 177–178 (1997)

    Article  CAS  Google Scholar 

  20. Kim JS. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J. Korean Soc. Food Sci. Nutr. 33: 1133–1138 (2004)

    Article  Google Scholar 

  21. Lebovitz HE. Postprandial hyperglycaemic state: Importance and consequences. Diabetes Res. Clin. Pract. 40: 27–28 (1998)

    Article  Google Scholar 

  22. Gerish JE. Clinical significance, pathogenesis, and management of postprandial hyperglycemia. Arch. Intern. Med. 163: 1306–1316 (2003)

    Article  Google Scholar 

  23. Hara Y, Honda M. The importance of hyperglycemia in the nonfasting state to the development of cardiovascular disease. Endocr. Rev. 19: 583–592 (1998)

    Article  Google Scholar 

  24. Jin JS, Nishihata T, Kakiuchi N, Hattori M. Biotransformation of C-glucosyl isoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biol. Pharm. Bull. 31: 1621–1625 (2008)

    Article  CAS  Google Scholar 

  25. Kim KY, Nam KA, Kurihara H, Kim SM. Potent a-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820–2825 (2008)

    Article  CAS  Google Scholar 

  26. Stern JL, Hagerman AE, Steinberg PD, Mason PK. Phlorotannins-protein interactions. J. Chem. Ecol. 22: 1877–1899 (1996)

    Article  CAS  Google Scholar 

  27. Park MH, Ju JW, Park MJ, Han JS. Daidzein inhibits carbohydrate digestive enzymes in vitro and alleviates postprandial hyperglycemia in diabetic mice. Eur. J. Pharmacol. 712: 48–52 (2013)

    Article  CAS  Google Scholar 

  28. Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, Tajima N, Tuomilehto J. International Prandial Glucose Regulation Study Group. Postprandial hyperglycaemia and cardiovascular complications of diabetes: An update. Nutr. Metab. Cardiovasc. Dis. 16: 453–456 (2006)

    CAS  Google Scholar 

  29. Ratner RE. Controlling postprandial hyperglycemia. Am. J. Cardiol. 88: 26–31 (2001)

    Article  Google Scholar 

  30. Verges BL. Dyslipidaemia in diabetes mellitus. Review of the main lipoprotein abnormalities and their consequences on the development of atherogenesis. Diabetes Metab. 25: 32–40 (1999)

    Google Scholar 

  31. Bastyr EJ, Stuart CA, Brodows RG, Schwartz S, Graf CJ, Zagar A, Robertson KE. Therapy focused on lowering postprandial glucose, not fasting glucose, may be superior for lowering HbA1c. IOEZ Study Group. Diabetes Care 23: 1236–1241 (2000)

    Article  CAS  Google Scholar 

  32. Hanefeld M. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J. Diabetes Complicat. 12: 228–237 (1998)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ji-Sook Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, MH., Kang, JH. & Han, JS. The hypoglycemic effect of fermented Pueraria thunbergiana extract in streptozotocin-induced diabetic mice. Food Sci Biotechnol 24, 2199–2203 (2015). https://doi.org/10.1007/s10068-015-0293-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0293-7

Keywords

Navigation