Skip to main content
Log in

A partially purified lipid extracted from Ruditapes philippinarum suppresses cancer cell proliferation

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Anticancer effects of lipids from a clam cultivated in Korea were investigated. Hexane extracts of Ruditapes philippinarum (R. philippinarum) exhibited the highest apoptosis rate of 40.9% at 0.5 mg/mL in PC3 cells. Hexane extracts were further separated and purified using TLC. Final lipid compounds were isolated and identified. Monounsaturated fatty acid and polyunsaturated fatty acid levels were significantly (p<0.05) increased in the purified lipid (19.71 and 34.63%), compared with the crude extract (12.96 and 15.56%). Partially purified lipid compounds exhibited an anticancer effect in several cancer cell lines, resulting in apoptosis rates in breast, lung, and liver cancer cells of 37.36, 17.78, 26.56%, respectively, at 30 µg/mL. This is the first report of an anticancer effect of a lipid extracted from R. philippinarum cultivated in Korea.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goulletquer P. A bibliography of Manila clam, Tapes philippinarum. IFREMERURAPC, La Tremblade, France. pp. 9–10 (1997)

    Google Scholar 

  2. Ovodova RG, Glazkova VE, Mikheyskaya LV, Molchanova VI, Isakov VV, Ovodov YS, Fernandez Molina LE. The structure of mytilan, a bioglycanimmunomodulator isolated from the mussel Crenomytilus grayanus. Carbohyd. Res. 223: 221–226 (1992)

    Article  CAS  Google Scholar 

  3. Lee SJ, Kim EK, Kim YS, Hwang JW, Lee KH, Choi DK, Kang H, Moon SH, Jeon BT, Park PJ. Purification and characterization of a nitric oxide inhibitory peptide from Ruditapes philippinarum. Food Chem. Toxicol. 50: 1660–1666 (2012)

    Article  CAS  Google Scholar 

  4. Miller TE, Dodd J, Ormrod DJ, Geddes R. Anti-inflammatory activity of glycogen extracted from Perna canaliculus (NZ green-lipped mussel). Agents Actions 38: C139–C142 (1993)

    Article  CAS  Google Scholar 

  5. Cesaretti M, Luppi E, Maccari F, Volpi N. Isolation and characterization of a heparin with high anticoagulant activity from the clam Tapes phylippinarum: Evidence for the presence of a high content of antithrombin III binding site. Glycobiology 14: 1275–1284 (2004)

    Article  CAS  Google Scholar 

  6. Iritani N, Fukuda E, Inoguchi K. Influences of oyster or clam feeding on lipid metabolism in rats. J. Nutr. Sci. Vitaminol. 25: 205–211 (1979)

    Article  CAS  Google Scholar 

  7. Chen TY, Lin BC, Shiao MS, Pan BS. Lipid-lowering and LDL-oxidation inhibitory effects of aqueous extract of freshwater clam (Corbicula fluminea)-Using tilapia as an animal model. J. Food Sci. 73: H148–H154 (2008)

    Article  CAS  Google Scholar 

  8. de Moreno JE, Moreno VJ, Brenner RR. Lipid metabolism of the yellow clam, Mesodesmamactroides: 3-saturated fatty acids and acetate metabolism. Lipids 12: 804–808 (1977)

    Article  Google Scholar 

  9. Berg CJ Jr, Krzynowek J, Alatalo P, Wiggin K. Sterol and fatty acid composition of the clam, Codakia orbicularis, with chemoautotrophic symbionts. Lipids 20: 116–120 (1985)

    Article  CAS  Google Scholar 

  10. McPhee S, Hodges LD, Wright PFA, Wynne PM, Kalafatis N, Harney DW, Macrides TA. Anti-cyclooxygenase effects of lipid extracts from the New Zealand green-lipped mussel, Perna canaliculus. Comp. Biochem. Phys. B 146: 346–356 (2007)

    Article  CAS  Google Scholar 

  11. Morrison WR, Smith LM. Preparation of fatty acid methyl esters and dimethylacetals from lipids with boron fluoride-methanol. J. Lipid Res. 5: 600–608 (1964)

    CAS  Google Scholar 

  12. Pirini M, Manuzzi MP, Pagliarani A, Trombetti F, Borgatti AR, Ventrella V. Changes in fatty acid composition of Mytilus galloprovincialis (Lmk) fed on microalgal and wheat germ diets. Comp. Biochem. Phys. B 147: 616–626 (2007)

    Article  Google Scholar 

  13. Hannum H. The Dublin Principles of cooperation among the beverage alcohol industry, governments, scientific researchers, and the public health community. Alcohol Alcoholism 32: 641–648 (1997)

    Article  CAS  Google Scholar 

  14. Byrd JC, Shinn C, Waselenko JK, Fuchs EJ, Lehman TA, Nguyen PL, Flinn IW, Diehl LF, Sausville E, Grever MR. Flavopiridol induces apoptosis in chronic lymphocytic leukemia cells via activation of caspase-3 without evidence of bcl-2 modulation or dependence on functional p 53. Blood 92: 3804–3816 (1998)

    CAS  Google Scholar 

  15. Yoo KY, Kang D, Park SK, Kim SU, Kim SU, Shin A, Yoon H, Ahn SH, Noh DY, Choe KJ. Epidemiology of breast cancer in Korea: Occurrence, high-risk groups, and prevention. J. Korean Med. Sci. 17: 1–6 (2002)

    Article  Google Scholar 

  16. World Health Organization. 10 facts on the global burden of disease. Available from: http://www.who.int/features/factfiles/global burden/en/index.html. Accessed Sep. 19, 2008.

  17. Ministry for Health, Welfare and Family Affairs (MHWFA). Annual report of cancer incidence and survival (1993-2005) in Korea. MHWFA, Sejong, Korea (2008)

  18. Vock C, Gleissner M, Klapper M, Doring F. Identification of palmitate-regulated genes in HepG2 cells by applying microarray analysis. Biochim. Biophys. Acta 1770: 1283–1288 (2007)

    Article  CAS  Google Scholar 

  19. Pegorier JP, Le May C, Girard J. Control of gene expression by fatty acids. J. Nutr. 134: 2444S–2449S (2004)

    CAS  Google Scholar 

  20. Black PN, Faergeman NJ, DiRusso CC. Long-chain acyl-CoA-dependent regulation of gene expression in bacteria, yeast and mammals. J. Nutr. 130: 305S–309S (2000)

    CAS  Google Scholar 

  21. Baylin A, Kabagambe EK, Siles X, Campos H. Adipose tissue biomarkers of fatty acid intake. Am. J. Clin. Nutr. 76: 750–757 (2002)

    CAS  Google Scholar 

  22. Listenberger LL, Ory DS, Schaffer JE. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276: 14890–14895 (2001)

    Article  CAS  Google Scholar 

  23. Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M, Langelier Y. Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J. Biol. Chem. 278: 31861–31870 (2003)

    Article  CAS  Google Scholar 

  24. Karmali RA, Marsh J, Fuchs C. Effect of omega-3 fatty acids on growth of a rat mammary tumor. J. Natl. Cancer Inst. 73: 457–461 (1984)

    CAS  Google Scholar 

  25. Begin ME, Ells G, Horrobin DF. Polyunsaturated fatty acid-induced cytotoxicity against tumor cells and its relationship to lipid peroxidation. J. Natl. Cancer Inst. 80: 188–194 (1988)

    Article  CAS  Google Scholar 

  26. Terry PD, Rohan TE, Wolk L. Intakes of fish and marine fatty acids and the risks of cancers of the breast and prostate and of other hormone-related cancers: A review of the epidemiologic evidence. Am. J. Clin. Nutr. 77: 532–543 (2003)

    CAS  Google Scholar 

  27. Falconer JS, Ross JA, Fearon KC, Hawkins RA, O'Riordain MG, Carter DC. Effect of eicosapentaenoic acid and other fatty acids on the growth in vitro of human pancreatic cancer cell lines. Brit. J. Cancer 69: 826–832 (1994)

    Article  CAS  Google Scholar 

  28. Colquhoun A, Schumacher RI. gamma-Linolenic acid and eicosapentaenoic acid induce modifications in mitochondrial metabolism, reactive oxygen species generation, lipid peroxidation and apoptosis in Walker 256 rat carcinosarcoma cells. Biochim. Biophys. Acta 1533: 207–219 (2001)

    Article  CAS  Google Scholar 

  29. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: A review of potential mechanisms. Am. J. Clin. Nutr. 79: 935–945 (2004)

    CAS  Google Scholar 

  30. Das UN. Tumoricidal action of cis-unsaturated fatty acids and their relationship to free radicals and lipid peroxidation. Cancer Lett. 56: 235–243 (1991)

    Article  CAS  Google Scholar 

  31. L'Abbe MR, Trick KD, Beare-Rogers JL. Dietary (n-3) fatty acids affect rat heart, liver and aorta protective enzyme activities and lipid peroxidation. J. Nutr. 121: 1331–1340 (1991)

    Google Scholar 

  32. Toborek M, Hennig B. Fatty acid-mediated effects on the glutathione redox cycle in cultured endothelial cells. Am. J. Clin. Nutr. 59: 60–65 (1994)

    CAS  Google Scholar 

  33. Germain E, Chajes V, Cognault S, Lhuillery C, Bougnoux P. Enhancement of doxorubicin cytotoxicity by polyunsaturated fatty acids in the human breast tumor cell line MDA-MB-231: Relationship to lipid peroxidation. Int. J. Cancer 75: 578–583 (1998)

    Article  CAS  Google Scholar 

  34. Palozza P, Sgarlata E, Luberto C, Piccioni E, Anti M, Marra G, Armelao F, Franceschelli P, Bartoli GM. n-3 fatty acids induce oxidative modifications in human erythrocytes depending on dose and duration of dietary supplementation. Am. J. Clin. Nutr. 64: 297–304 (1996)

    CAS  Google Scholar 

  35. Esterbauer H, Schaur RJ, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes. Free Radical Bio. Med. 11: 81–128 (1991)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pyo-Jam Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, EK., Kim, YS., Hwang, JW. et al. A partially purified lipid extracted from Ruditapes philippinarum suppresses cancer cell proliferation. Food Sci Biotechnol 24, 2177–2183 (2015). https://doi.org/10.1007/s10068-015-0290-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0290-x

Keywords

Navigation