Skip to main content
Log in

Structural characterization and functional evaluation of an exopolysaccharide produced by Weissella confusa AJ53, an isolate from fermented Uttapam batter supplemented with Piper betle L. leaves

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Weissella confusa AJ53 isolated from fermented Uttapam batter supplemented with Piper betle L. leaves produced an exopolysaccharide (EPS) from sucrose. The optimum culture conditions were determined for maximum production. EPS AJ53 was characterized using spectral analysis as an unbranched linear (α-1→6 linked) dextran, homopolymer of D-glucose. Melting and degradation temperatures of EPS AJ53 were 103.84 and 265°C, respectively. EPS AJ53 exhibited antioxidant activities for scavenging of hydroxyl, DPPH, and nitric oxide radicals, and metal ion chelating and poor reducing abilities. A fat binding ability, oil emulsifying activity, and syneresis-prevention activity due to a water holding capacity were demonstrated. Application as an adjunct to provide value addition to food products is indicated. A potent flocculating ability enables EPS AJ53 to be used for water treatment and cryoprotectant applications as an alternative cryoprotective agent. The yield and properties of EPS AJ53 indicate multiple uses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimmel SA, Roberts RF, Ziegler GR. Optimization of exopolysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus RR grown in a semidefined medium. Appl. Environ. Microb. 64: 659–664 (1998)

    CAS  Google Scholar 

  2. Saraniya A, Jeevaratnam K. Molecular characterization of bacteriocinogenic Lactobacillus s pecies i solated from fermented uttapam b atter. B iosci. Biotechnol. Res. Asia 9: 417–421 (2012)

    Article  CAS  Google Scholar 

  3. Liu C, Lu J, Lu L, Liu Y, Wang F, Xiao M. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1 Bioresource Technol. 101: 5528–5533 (2010)

    Article  CAS  Google Scholar 

  4. Calazans GMT, Lopes CE, Lima RMOC, de Franc FP. Antitumor activities of levans produced by Zymomonas mobilis strains. Biotechnol. Lett. 19: 19–21 (1997)

    Article  CAS  Google Scholar 

  5. Pan D, Mei X. Antioxidant activity of an exopolysaccharide purified from Lactococcus lactis subsp. lactis 12. Carbohyd. Polym. 80: 908–914 (2010)

    Article  CAS  Google Scholar 

  6. Korakli M, Vogel RF. Structure/function relationship of homopolysaccharide producing glycansucrases and therapeutic potential of their synthesized glycans. Appl. Microbiol. Biot. 71: 790–803 (2006)

    Article  CAS  Google Scholar 

  7. Fusco V, Quero GM, Stea G, Morea M, Visconti A. Novel PCR-based identification of Weissella confusa using an AFLP-derived marker. Int. J. Food Microbiol. 145: 437–443 (2011)

    Article  CAS  Google Scholar 

  8. Dabour N, LaPointe G. Identification and molecular characterization of the chromosomal exopolysaccharide biosynthesis gene cluster from Lactococcus lactis subsp. cremoris SMQ-461. Appl. Environ. Microb. 71: 7414–7425 (2005)

    Article  CAS  Google Scholar 

  9. Dubois M, Gilles KA, Hamilton JK, Peters PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350–356 (1956)

    Article  CAS  Google Scholar 

  10. Ye S, Liu F, Wang J, Wang H, Zhang M. Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF6. Carbohyd. Polym. 87: 764–770 (2012)

    Article  CAS  Google Scholar 

  11. Liu C-F, Tseng K-C, Chiang S-S, Lee B-H, Hsu W-H, Pan T-M. Immunomodulatory and antioxidant potential of Lactobacillus exopolysaccharides. J. Sci. Food Agr. 91: 2284–2291 (2011)

    CAS  Google Scholar 

  12. Sreejayan N, Rao MNA. Nitric oxide scavenging by curcuminoids. J. Pharm. Pharmacol. 49: 105–107 (1997)

    Article  CAS  Google Scholar 

  13. Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivatives (acetaminophen, salicylate, and 5-amino salicylate) as inhibitors of membrane l ipid peroxid ation and as peroxyl r ad i cal s cavengers. Arch. Biochem. Biophys. 315: 161–169 (1994)

    Article  CAS  Google Scholar 

  14. Viñarta SC, Molina OE, Figueroa LIC, Fariña JI. A further insight into the practical applications of exopolysaccharides from Sclerotium rolfsii. Food Hydrocolloid 20: 619–629 (2006)

    Article  Google Scholar 

  15. Daou C, Zhang H. Physico-chemical properties and antioxidant avtivities of dietary fibre derived from defatted rice bran. Adv. J. Food Sci. Technol. 3: 339–347 (2011)

    CAS  Google Scholar 

  16. Yun UJ, Park DH. Physical prpoerties of an extracellular polysaccharide produced by Bacillus sp. CP912. Lett. Appl. Microbiol. 36: 252–287 (2003)

    Google Scholar 

  17. Xu R, Ma S, Wang Y, Liu L, Li P. Screening, identification and statistic optimization of a novel exopolysaccharide producing Lactobacillus paracasei HCT. Afr. J. Microbiol. Res. 4: 783–795 (2010)

    CAS  Google Scholar 

  18. Tayuan C, Tannock GW, Rodtong S. Growth and exopolysaccharide production by Weissella sp. from low-cost substitutes for sucrose. Afr. J. Microbiol. Res. 5: 3693–3701 (2011)

    CAS  Google Scholar 

  19. Chi Z, Su CD, Lu WD. A new exopolysaccharide produced by marine Cyanothece sp. 113. Bioresource Technol. 98: 1329–1332 (2007)

    Article  CAS  Google Scholar 

  20. Cerna M, Barros AS, Nunes A, Rocha SM, Delgadillo I, Copikova J, Coimbra MA. Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohyd. Polym. 51: 383–389 (2003)

    Article  CAS  Google Scholar 

  21. Maeda H, Zhu X, Suzuki S, Suzuki K, Kitamura S. Structural characterization and biological activities of an exopolysaccharide Kefiran produced by Lactobacillus kefiranofaciens WT-2BT. J. Agr. Food. Chem. 52: 5533–5538 (2004)

    Article  CAS  Google Scholar 

  22. Shukla R, Shukla S, Bivolarski V, Iliev I, Ivanova I, Goyal A. Structural characterization of insoluble dextran produced by Leuconostoc mesenteroides NRRL B-1149 in the presence of maltose. Food Technol. Biotech. 49: 291–296 (2011)

    CAS  Google Scholar 

  23. Usui T, Yamaoka N, Mastuda K, Tuzimura K, Sugiyama H, Seto S. 13C nuclear magnetic resonance spectra of glucobiose, glucotriose, and glucans. J. Chem. Soc. Perk. T. 1 1: 2425–2432 (1973)

    Article  Google Scholar 

  24. Maina NH, Tenkanen M, Maaheimo H, Juvonenb R, Virkkia L. NMR spectroscopic analysis of exopolysaccharides produced by Leuconostoc citreum and Weissella confusa. Carbohyd. Res. 343: 1446–1455 (2008)

    Article  CAS  Google Scholar 

  25. Hsu N-Y, Yang W-B, Wong C-H, Lee Y-C, Lee RT, Wang Y-S, Chen C-H. Matrixassisted laser desorption/ionization mass spectrometry of polysaccharides with 2’,4’,6’-trihydroxyacetophenone as matrix. Rapid Commun. Mass SP. 21: 2137–2146 (2007)

    Article  CAS  Google Scholar 

  26. Kanmani P, Kumar R, Yuvaraj Y, Paari KA, Pattukumar V, Arul V. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae PI80 and its functional characteristics activity in vitro. Bioresource Technol. 102: 4827–4833 (2011)

    Article  CAS  Google Scholar 

  27. Kanmani P, Suganya K, Satish kumar R, Yuvaraj N, Pattukumar V, Paari KA, Arul V. Synthesis and functional characterization of antibiofilm exopolysaccharide produced by Enterococcus faecium MC13 isolated from the gut of fish. Appl. Biochem. Biotech. 169: 1001–1015 (2013)

    Article  CAS  Google Scholar 

  28. Wang Y, Li C, Liu P, Ahmed Z, Xiao P, Bai X. Physical characterization of exopolysaccharide produced by Lactobacillus plantarum K F5 i solated from Tibet Kefir. Carbohyd. Polym. 82: 895–903 (2010)

    Article  CAS  Google Scholar 

  29. Thanatcha R, Pranee A. Extraction and characterization of mucilage in Ziziphus mauritiana Lam. Int. Food Res. J. 18: 201–212 (2011)

    CAS  Google Scholar 

  30. Zheng GH, Sosulski FW. Determination of water separation from cooked starch and flour pastes after refrigeration and freeze-thaw. J. Food Sci. 63: 134–139 (1998)

    Article  CAS  Google Scholar 

  31. Freitas F, Alves VD, Carvalheira M, Costa N, Oliveira R, Reis MA. Emulsifying behavior and rheological properties of the extracellular polysaccharide produced by Pseudomonas oleovorans grown on glycerol by product. Carbohyd. Polym. 78: 549–556 (2009)

    Article  CAS  Google Scholar 

  32. Kim SJ, Yim JH. Cryoprotective properties of exopolysaccharide (P-21653) produced by the antarctic bacterium, Pseudoalteromonas arctica KOPRI 21653. J. Microbiol. 45: 510–514 (2007)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadirvelu Jeevaratnam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, A.K., Jeevaratnam, K. Structural characterization and functional evaluation of an exopolysaccharide produced by Weissella confusa AJ53, an isolate from fermented Uttapam batter supplemented with Piper betle L. leaves. Food Sci Biotechnol 24, 2117–2124 (2015). https://doi.org/10.1007/s10068-015-0281-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0281-y

Keywords

Navigation