Skip to main content
Log in

Comparative study of fecal microbiota in patients with type II diabetes after consumption of apple juice for 4 weeks

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The effect of cloudy apple juice on fecal microbiota of type 2 diabetics was studied. Five volunteers consumed apple juice while 5 control volunteers received an isocaloric control beverage daily for 4 weeks. DGGE profile analysis showed high diversity between volunteers that did not change over the intervention period using primers for Firmicutes, Bacteroidetes, bifidobacteria, enterococci, and enterobacteria. An exception was observed using lactobacilli primers, perhaps as the result of the dietary influence. Consumption of apple juice was not correlated with changes in DGGE profiles. Quantitative PCR was used to investigate the effect of apple juice on bacterial counts in different subgroups. Apple juice did not lead to significantly (p>0.05) different numbers of total bacteria, enterobacteria, bifidobacteria, lactobacilli, or Bacteroidetes, but caused a significant (p<0.05) decrease in numbers of enterococci, and a smaller but also significant decrease in numbers of Firmicutes, when comparing before and after intervention with apple juice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turroni F, Ribbera A, Foroni E, van Sinderen D, Ventura M. Human gut microbiota and bifidobacteria: From composition tofunctionality. Anton Leeuw. Int. J. G. 94: 35–50 (2008)

    Article  Google Scholar 

  2. Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol. Ecol. 58: 572–582 (2006)

    Article  CAS  Google Scholar 

  3. Barth SW, Fähndrich C, Bub A, Dietrich H, Watzl B, Will F, Briviba K, Rechkemmer G. Cloudy apple juice decreases DNA damage, hyperproliferation and aberrant crypt foci development in the distal colon of DMH-initiated rats. Carcinogenesis 126: 1414–1421 (2005)

    Article  Google Scholar 

  4. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444: 1027–1031 (2006)

    Article  Google Scholar 

  5. Turnbaugh PJ, Hamady M, Yatsunenko T, Cantarel BL, Duncan A, Ley RE, Sogin ML, Jones WJ, Roe BA, Affourtit JP, Egholm M, Henrissat B, Heath AC, Knight R, Gordon JI. A core gut microbiome in obese and lean twins. Nature 457: 480–484 (2009)

    Article  CAS  Google Scholar 

  6. Wang XL, Hur HG, Lee JH, Kim KT, Kim SI. Enantioselective synthesis of S-equol from dihydrodaidzein by a newly isolated anaerobic human intestinal bacterium. Appl. Environ. Microb. 71: 214–219 (2005)

    Article  CAS  Google Scholar 

  7. Hsu CL, Yen GC. Phenolic compounds: Evidence for inhibitory effects against obesity and their underlying molecular signaling mechanisms. Mol. Nutr. Food Res. 52: 53–61 (2008)

    Article  CAS  Google Scholar 

  8. Shinohara K, Ohashi Y, Kawasumi K, Terada A, Fujisawa T. Effect of apple intake on fecal microbiota and metabolites in humans. Anaerobe 16: 510–515 (2010)

    Article  CAS  Google Scholar 

  9. Barth SW, Koch TC, Watzl B, Dietrich H, Will F, Bub, A. Moderate effects of apple juice consumption on obesity-related markers in obese men: Impact of diet-gene interaction on body fat content. Eur. J. Nutr. 51: 841–850 (2012)

    Article  CAS  Google Scholar 

  10. Larsen N, Vogensen FK, van den Berg FWJ, Nielsen D S, Andreasen A S, Pedersen BK, Abu Al-Soud W, Sorensen SJ, Hansen LH, Jakobsen M. Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS ONE 5: e9085 (2010)

    Article  Google Scholar 

  11. Mathara JM, Schillinger U, Guigas C, Franz C, Kutima PM, Mbugua SK, Shin HK, Holzapfel WH. Functional characteristics of Lactobacillus spp. from traditional Maasai fermented milk products in Kenya. Int. J. Food Microbiol. 126: 57–64 (2008)

    CAS  Google Scholar 

  12. Cho GS, Huch M, Hanak A, Holzapfel WH, Franz CM. Genetic analysis of the plantaricin EFI locus of Lactobacillus plantarum PCS20 reveals an unusual plantaricin E gene sequence as a result of mutation. Int. J. Food Microbiol. 141: S117–S124 (2010)

    Article  CAS  Google Scholar 

  13. Mühling M, Woolven-Allen J, Murrell JC, Joint I. Improved group-specific PCR primers for denaturing gradient gel electrophoresis analysis of the genetic diversity of complex microbial communities. ISME J. 2: 379–392 (2008)

    Article  Google Scholar 

  14. Guo X, Xia X, Tang R, Zhou J, Zhao H, Wang K. Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Lett. Appl. Microbiol. 47: 367–373 (2008)

    Article  CAS  Google Scholar 

  15. Lozupone CA, Stombaugh JI, Gordon JI, Jansson JK, Knight R. Diversity, stability and resilience of the human gut microbiota. Nature 489: 220–230 (2012)

    Article  CAS  Google Scholar 

  16. Arumugam M, Raes J, Pelletier E, Le P aslier D, Yamada T, Mende DR, Fernandes GR, Tap J, Bruls T, Batto JM, Bertalan M, Borruel N, Casellas F, Fernandez L, Gautier L, Hansen T, Hattori M, Hayashi T, Kleerebezem M, Kurokawa K, Leclerc M, Levenez F, Manichanh C, Nielsen HB, Nielsen T, Pons N, Poulain J, Qin J, Sicheritz-Ponten T, Tims S, Torrents D, Ugarte E, Zoetendal EG, Wang J, Guarner F, Pedersen O, de Vos WM, Brunak S, Dore J, Meta HITC, Antolin M, Artiguenave F, Blottiere HM, Almeida M, Brechot C, Cara C, Chervaux C, Cultrone A, Delorme C, Denariaz G, Dervyn R, Foerstner KU, Friss C, van de Guchte M, Guedon E, Haimet F, Huber W, van Hylckama-Vlieg J, Jamet A, Juste C, Kaci G, Knol J, Lakhdari O, Layec S, Le Roux K, Maguin E, Merieux A, Melo Minardi R, M’ Rini C, Muller J, Oozeer R, Parkhill J, Renault P, Rescigno M, Sanchez N, Sunagawa S, Torrejon A, Turner K, Vandemeulebrouck G, Varela E, Winogradsky Y, Zeller G, Weissenbach J, Ehrlich SD, Bork P. Enterotypes of the human gut microbiome. Nature 473: 174–180 (2011)

    Article  CAS  Google Scholar 

  17. Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology-Human gut microbes associated with obesity. Nature 444: 1022–1023 (2006)

    Article  CAS  Google Scholar 

  18. Jalanka-Tuovinen J, Salonen A, Nikkila J, Immonen O, Kekkonen R, Lahti L, Palva A, de Vos WM. Intestinal microbiota in healthy adults: Temporal analysis reveals individual and common core and relation to intestinal symptoms. PLoS ONE 6: e23035 (2011)

    Article  CAS  Google Scholar 

  19. Kolmeder CA, de Been M, Nikkila J, Ritamo I, Matto J, Valmu L, Salojarvi J, Palva A, Salonen A, de Vos WM. Comparative metaproteomics and diversity analysis of human intestinal microbiota testifies for its temporal stability and expression of core functions. PLoS ONE 7: e29913 (2012)

    Article  CAS  Google Scholar 

  20. Vanhoutte T, de Preter V, de Brandt E, Verbeke K, Swings J, Huys G. Molecular monitoring of the fecal microbiota of healthy human subjects during administration of lactulose and Saccharomyces boulardii. Appl. Environ. Microbiol. 72: 5990–5997 (2006)

    Article  CAS  Google Scholar 

  21. Wu XK, Ma CF, Han L, Nawaz M, Gao F, Zhang XY, Yu PB, Zhao CA, Li LC, Zhou AP, Wang JA, Moore JE, Millar BC, Xu JR. Molecular characterisation of the faecal microbiota in patients with type II diabetes. Curr. Microbiol. 61: 69–78 (2010)

    Article  CAS  Google Scholar 

  22. Dal Bello F, Hertel C. Oral cavity as natural reservoir for intestinal lactobacilli. Syst. Appl. Microbiol. 29: 69–76 (2006)

    Article  Google Scholar 

  23. Ruoff KL. Recent taxonomic changes in the genus Enterococcus. Eur. J. Clin. Microbiol. 9: 75–79 (1990)

    Article  CAS  Google Scholar 

  24. Fujimoto J, Matsuki T, Sasamoto M, Tomii Y, Watanabe K. Identification and quantification of Lactobacillus casei strain Shirota in human feces with strainspecific primers derived from randomly amplified polymorphic DNA. Int. J. Food Microbiol. 126: 210–215 (2008)

    Article  CAS  Google Scholar 

  25. Harmsen HJM, Elfferich P, Schut F, Welling GW. A 16S rRNA-targeted probe for detection of Lactobacillus and Enterococci in faecal samples by fluorescent in situ hybridization. Microb. Ecol. Health D. 11: 3–12 (1999)

    Article  Google Scholar 

  26. Marchesi JR. Human distal gut microbiome. Environ. Microbiol. 13: 3088–3102 (2011)

    Article  Google Scholar 

  27. Walter J, Ley R. The human gut microbiome: Ecology and recent evolutionary changes. Annu. Rev. Microbiol. 65: 411–429 (2011)

    Article  CAS  Google Scholar 

  28. Chenoweth C, Schaberg D. The epidemiology of enterococci. Eur. J. Clin. Microbiol. Infect. Dis. 9: 80–89 (1990)

    Article  CAS  Google Scholar 

  29. Rinttilä T, Kassinen A, Malinen E, Krogius L, Palva A. Development of an extensive set of 16S rDNA-targeted primers for quantification of pathogenic and indigenous bacteria in faecal samples by real-time PCR. J. Appl. Microbiol. 97: 1166–1177 (2004)

    Article  Google Scholar 

  30. Remely M, Simone D, Berit H, Jutta Z, Eva A, Helmut B, Alexander H. Abundance and diversity of microbiota in type 2 diabetes and obesity. J. Diabetes Metab. 4: 253 (2013)

    Google Scholar 

  31. Licht TR, Hansen M, Bergstrom A, Poulsen M, Krath BN, Markowski J, Dragsted LO, Wilcks A. Effects of apples and specific apple components on the cecal environment of conventional rats: Role of apple pectin. BMC Microbiol. 10: 13 (2010)

    Article  Google Scholar 

  32. Zwielehner J, Lassl C, Hippe B, Pointner A, Switzeny OJ, Remely M, Kitzweger E, Ruckser R, Haslberger AG. Changes in human fecal microbiota due to chemotherapy analyzed by TaqMan-PCR, 454 Sequencing and PCR-DGGE fingerprinting. PLoS ONE 6: e28654 (2011)

    Article  CAS  Google Scholar 

  33. Armougom F, Henry M, Vialettes B, Raccah D, Raoult D. Monitoring bacterial community of human gut microbiota reveals an increase in Lactobacillus in obese patients and Methanogens in anorexic patients. PLoS ONE 4: e7125 (2009)

    Article  Google Scholar 

  34. Malinen E, Kassinen A, Rinttilä T, Palva A. Comparison of real-time PCR with SYBR Green I or 5’ -nuclease assays and dot-blot hybridization with rDNAtargeted oligonucleotide probes in quantification of selected faecal bacteria. Microbiology 149: 269–277 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyu-Sung Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, GS., König, A., Seifert, S. et al. Comparative study of fecal microbiota in patients with type II diabetes after consumption of apple juice for 4 weeks. Food Sci Biotechnol 24, 2083–2094 (2015). https://doi.org/10.1007/s10068-015-0277-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0277-7

Keywords

Navigation