Skip to main content
Log in

Infusion of catechin into native corn starch granules for drug and nutrient delivery systems

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Hydrophilic nutrients, a water insoluble drug, and amino acids were used as infusion materials for analysis w ith HPLC and a micro-plate reader. Only catechin, gallic a cid, and caffeine infused into native corn starch granules. While catechin remained in the native corn starch granule after several washing steps, infused caffeine and gallic acid were washed out. A release study was also performed using pancreatin α-amylase. Infused catechin was successfully released when native corn starch granules were decomposed. Infusion and maintenance of catechin in native corn starch granules were probably due to a unique chemical structure of the benzene-tetrahydropyran group that affected interactions with starch. However, experiments using epicatechin and rutin indicated that the benzenetetrahydropyran group structure may not have been the only reason for infusion of guest materials. The 3 dimensional structure of the benzene-tetrahydropyran group probably also influenced infusion of materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh B, Chakkal S, Ahuja N. Formulation and optimization of controlled release mucoadhesive tablets of atenolol using response surface methodology. AAPS Pharm Sci Tech. 7: E19–E28 (2006)

    Article  Google Scholar 

  2. de Brabander C, Vervaet C, Görtz JP, Remon JP, Berlo JA. Bioavailability of ibuprofen from matrix mini-tablets based on a mixture of starch and microcrystalline wax. Int. J. Pharm. 208: 81–86 (2000)

    Article  Google Scholar 

  3. Bibby DC, Davies NM, Tucker IG. Mechanisms by which cyclodextrins modify drug release from polymeric drug delivery systems. Int. J. Pharm. 197: 1–11 (2000)

    Article  CAS  Google Scholar 

  4. Yang L, Zhang B, Yi J, Liang J, Liu Y, Zhang L-M. Preparation, characterization, and properties of amylose-ibuprofen inclusion complexes. Starch-Stärke 65: 593–602 (2013)

    Article  CAS  Google Scholar 

  5. Dimantov A, Greenberg M, Kesselman E, Shimoni E. Study of high amylose corn starch as food grade enteric coating in a microcapsule model system. Innov. Food Sci. Emerg. 5: 93–100 (2004)

    Article  CAS  Google Scholar 

  6. Tan A, Simovic S, Davey AK, Rades T, Prestidge CA. Silica-lipid hybrid (SLH) microcapsules: A novel oral delivery system for poorly soluble drugs. J. Control. Release 134: 62–70 (2009)

    Article  CAS  Google Scholar 

  7. Yang Y-Y, Chung T-S, Ng NP. Morphology, drug distribution, and in vitro release profiles of biodegradable polymeric microspheres containing protein fabricated by double-emulsion solvent extraction/evaporation method. Biomaterials 22: 231–241 (2001)

    Article  CAS  Google Scholar 

  8. Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol. Sci. 30: 592–599 (2009)

    Article  CAS  Google Scholar 

  9. Malafaya PB, Elvira C, Gallardo A, San Román J, Reis RL. Porous starch-based drug delivery systems processed by a microwave route. J. Biomat. Sci-Polym. E. 12: 1227–1241 (2001)

    Article  CAS  Google Scholar 

  10. Wang TL, Bogracheva TY, Hedley CL. Starch: As simple as A, B, C? J. Exp. Bot. 49: 481–502 (1998)

    CAS  Google Scholar 

  11. Jenkins PJ, Donald AM. Application of small-angle neutron scattering to the study of the structure of starch granules. Polymer 37: 5559–5568 (1996)

    Article  CAS  Google Scholar 

  12. Tester RF, Karkalas J, Qi X. Starch structure and digestibility enzyme-substrate relationship. World Poultry Sci. J. 60: 186–195 (2004)

    Article  Google Scholar 

  13. Lehmann U, Robin F. Slowly digestible starch-its structure and health implications: a review. Trends Food Sci. Tech. 18: 346–355 (2007)

    Article  CAS  Google Scholar 

  14. Fannon JE, Hauber RJ, BeMiller, JN. Surface pores of starch granules. Cereal Chem. 69: 284–288 (1992)

    Google Scholar 

  15. Huber KC, Be Miller JN. Visualization of channels and cavities of corn and sorghum starch granules. Cereal Chem. 74: 537–541 (1997)

    Article  CAS  Google Scholar 

  16. Huber KC, Be Miller JN. Channels of maize and sorghum starch granules. Carbohyd. Polym. 41: 269–276 (2000)

    Article  CAS  Google Scholar 

  17. Fannon J, Gray J, Gunawan N, Huber K, Be Miller J. The channels of starch granules. Food Sci. Biotechnol. 12: 700–704 (2003)

    CAS  Google Scholar 

  18. Naguleswaran S, Li J, Vasanthan T, Bressler D. Distribution of granule channels, protein, and phospholipid in triticale and corn starches as revealed by confocal laser scanning microscopy. Cereal Chem. 88: 87–94 (2010)

    Article  Google Scholar 

  19. Janaswamy S. Encapsulation altered starch digestion: Toward developing starch-based delivery systems. Carbohyd. Polym. 101: 600–605 (2014)

    Article  CAS  Google Scholar 

  20. Jiang T, Wu C, Gao Y, Zhu W, Wan L, Wang Z, Wang S. Preparation of novel porous starch microsphere foam for loading and release of poorly water soluble drug. Drug Dev. Ind. Pharm. 40: 252–259 (2014)

    Article  CAS  Google Scholar 

  21. Achayuthakan P, Suphantharika M, Be Miller JN. Confocal laser scanning microscopy of dextran-rice starch mixtures. Carbohyd. Polym. 87: 557–563 (2012)

    Article  CAS  Google Scholar 

  22. Leegwater D, Luten J. A study on the in vitro digestibility of hydroxypropyl starches by pancreatin. Starch-Stärke 23: 430–432 (1971)

    Article  CAS  Google Scholar 

  23. Ho Y, Lee Y-L, Hsu K-Y. Determination of (+)-catechin in plasma by highperformance liquid chromatography using fluorescence detection. J. Chromatogr. B. 665: 383–389 (1995)

    Article  CAS  Google Scholar 

  24. Dube A, Ng K, Nicolazzo JA, Larson I. Effective use of reducing agents and nanoparticle encapsulation in stabilizing catechins in alkaline solution. Food Chem. 122: 662–667 (2010)

    Article  CAS  Google Scholar 

  25. Jacobs H, Eerlingen RC, Spaepen H, Grobet PJ, Delcour JA. Impact of annealing on the susceptibility of wheat, potato and pea starches to hydrolysis with pancreatin. Carbohyd. Res. 305: 193–207 (1997)

    Article  CAS  Google Scholar 

  26. Chen P, Yu L, Simon G, Petinakis E, Dean K, Chen L. Morphologies and microstructures of corn starches with different amylose-amylopectin ratios studied by confocal laser scanning microscope. J. Cereal Sci. 50: 241–247 (2009)

    Article  CAS  Google Scholar 

  27. Udenfriend S, Stein S, Böhlen P, Dairman W, Leimgruber W, Weigele M. Fluorescamine: A reagent for assay of amino acids, peptides, proteins, and primary amines in the picomole range. Science 178: 871–872 (1972)

    Article  CAS  Google Scholar 

  28. Bantan-Polak T, Kassai M, Grant KB. A comparison of fluorescamine and naphthalene-2,3-dicarboxaldehyde fluorogenic reagents for microplate-based detection of amino acids. Anal. Biochem. 297: 128–136 (2001)

    Article  CAS  Google Scholar 

  29. Chung H-J, Shin D-H, Lim S-T. In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Res. Int. 41: 579–585 (2008)

    Article  CAS  Google Scholar 

  30. Han J-A, Be Miller JN. Effects of protein on crosslinking of normal maize, waxy maize, and potato starches. Carbohyd. Polym. 73: 532–540 (2008)

    Article  CAS  Google Scholar 

  31. Deladino L, Teixeira AS, Navarro AS, Alvarez I, Molina-García AD, Martino M. Corn starch systems as carriers for yerba mate (Ilex paraguariensis) antioxidants. Food Bioprod. Process. 94: 463–472 (2015)

    Article  CAS  Google Scholar 

  32. Fannon JE, Gray JA, Gunawan N, Huber KC, Be Miller JN. Heterogeneity of starch granules and the effect of granule channelization on starch modification. Cellulose 11: 247–254 (2004)

    Article  CAS  Google Scholar 

  33. Yan C, Xiu Z, Li X, Hao C. Molecular modeling study of ß-cyclodextrin complexes with (+)-catechin and (-)-epicatechin. J. Mol. Graph. Model. 26: 420–428 (2007)

    Article  CAS  Google Scholar 

  34. Ishizu T, Kintsu K, Yamamoto H. NMR study of the solution structures of the inclusion complexes of ß-cyclodextrin with (+)-catechin and (-)-epicatechin. J. Phys. Chem. B 103: 8992–8997 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moo-Yeol Baik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Choi, SH., Kim, W. et al. Infusion of catechin into native corn starch granules for drug and nutrient delivery systems. Food Sci Biotechnol 24, 2035–2040 (2015). https://doi.org/10.1007/s10068-015-0270-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0270-1

Keywords

Navigation