Food Science and Biotechnology

, Volume 24, Issue 5, pp 1761–1766 | Cite as

Probiotic properties of lactic acid bacteria isolated from Korean rice wine Makgeolli

  • Yeo-Ul Park
  • Myo-Deok Kim
  • Dong-Hyun Jung
  • Dong-Ho Seo
  • Jong-Hyun Jung
  • Jae-Gwang Park
  • Sung-Youl Hong
  • Jae-Youl Cho
  • Sun-Young Park
  • Jong-Wook Park
  • Woo-Chang Shin
  • Cheon-Seok ParkEmail author


Makgeolli, a traditional Korean alcoholic beverage, includes many kinds of lactic acid bacteria (LAB). In this study, 17 different LAB strains were isolated from makgeolli and their functional effects were examined. The 17 LAB were identified as eight Pediococcus acidilactici strains, six P. pentosaceus strains, two Lactobacillus curvatus strains, and one L. curstorum strain. Evaluation of nitric oxide (NO) production showed that all of the LAB strains except P. acidilactici 4 (PA4) produced higher amounts of NO than L. rhamnosus GG, indicating that they may have immunomodulatory effects. In addition, P. acidilactici 5 ( PA5), P. pentosaceus 5 (PP5), L. curvatus 1, and L. curstorum 1 exhibited high acid tolerance properties. PA5 and PP5 also exhibited good bile acid tolerance. Lastly, Caco-2 cell adhesion experiments revealed that PA5 had a high cell adhesion rate of 19-43%. In conclusion, PA5 may be useful as a probiotic for further food industry applications.


acid tolerance bile tolerance makgeolli nitric oxide probiotics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee NK, Kim HW, Chang HI, Yun CW, Kim SW, Kang CW, Paik HD. Probiotic properties of Lactobacillus plantarum NK181 lsolated from jeotgal, a Korean fermented food. Food Sci. Biotechnol. 15: 227–231 (2006)Google Scholar
  2. 2.
    Jang DB, Park SK, Lee HJ, Pyo SE, Lee HS. Isolation of the alcohol-tolerant lactic acid bacteria Pediococcus acidilactici K3 and S1 and their physiological characterization. Microbiol. Biotechnol. Lett. 41: 442–448 (2013)Google Scholar
  3. 3.
    Min JH, Nam YG, Ju JI, Jung JH, Lee JS, Kim HK. Changes in yeast and bacterial flora during fermentation and storage of gugija-liriope tuber makgeolli using PCR-DGGE. Microbiol. Biotechnol. Lett. 40: 111–116 (2012)Google Scholar
  4. 4.
    Yang HS, Eun JB. Fermentation and sensory characteristics of Korean traditional fermented liquor (makgeolli) added with citron (Citrus junos SIEB ex TANAKA) juice. Korean J. Food Sci. Technol. 43: 438–445 (2011)CrossRefGoogle Scholar
  5. 5.
    Sung NK, Shim KH, Chung DH, Kim YG. Studies on the rice makkulli-(park III) changes of components in makkulli brewing with some rice varieties. J. Inst. Agr. Res. 13: 25–31 (1979)Google Scholar
  6. 6.
    Kim YG, Sung NK, Chung DH, Kang IS. Microbiology studies on the rice Makgeoly IV, properties of nucleic acid degrading enzymes and their related substances during brewing. Korean J. Food Sci. Technol. 15: 245–251 (1983)Google Scholar
  7. 7.
    Yang JI, Lee KH. Shelf-life and microbiological study of Sansung Takju. Korean J. Food Sci. Technol. 28: 779–785 (1996)Google Scholar
  8. 8.
    Lee SJ, Kim JH, Jung YW, Park SY, Shin WC, Park CS, Hong SY, Kim GW. Composition of organic acids and physiological functionality of commercial makgeolli. Korean J. Food Sci. Technol. 43: 206–212 (2011)CrossRefGoogle Scholar
  9. 9.
    Connor JR, Manning PT, Settle SL, Moore WM, Jerome GM, Webber RK, Tjoeng FS, Currie MG. Suppression of adjuvant-induced arthritis by selective inhibition of inducible nitric oxide synthase. Eur. J. Pharmacol. 273: 15–24 (1995)CrossRefGoogle Scholar
  10. 10.
    Min JH, Kim YH, Kim JH, Choi SY, Lee JS, Kim HK. Comparison of microbial diversity of Korean commercial makgeolli showing high β-glucan content and high antihypertensive activity, respectively. Mycobiology 40: 138–141 (2012)CrossRefGoogle Scholar
  11. 11.
    Fuller R. Probiotics in man and animals. J. Appl. Bacteriol. 66: 365–378 (1989)CrossRefGoogle Scholar
  12. 12.
    Ouwehand AC, Salminen S, Isolauri E. Probiotics: An overview of beneficial effects. Antonie Van Leeuwenhoek 82: 279–289 (2002)CrossRefGoogle Scholar
  13. 13.
    Lim SM, Im DS. Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J. Microbiol. Biotechnol. 19: 178–186 (2009)CrossRefGoogle Scholar
  14. 14.
    Park SH, Kim YA, Lee DK, Lee SJ, Chung MJ, Kang BY, Kim K, Ha NJ. Antibacterial activity and macrophage activation of lactic acid bacteria. Environ. Health Toxicol. 22: 287–297 (2007)Google Scholar
  15. 15.
    Choi HJ, Kim JY, Shin MS, Lee SM, Lee WK. Immuno-enhancing effects of Lactobacillus salivarius JWS 58 and Lactobacillus plantarum JWS 1354 isolated from duck. Korean J. Vet. Res. 51: 281–288 (2011)Google Scholar
  16. 16.
    Jung KK, Lee HS, Cho JY, Shin WC, Rhee MH, Kim TG, Kang JH, Kim SH, Hong S, Kang SY. Inhibitory effect of curcumin on nitric oxide production from lipopolysaccharide-activated primary microglia. Life sci. 79: 2022–2031 (2006)CrossRefGoogle Scholar
  17. 17.
    Park SY, Ji GE, Ko YT, Jung HK, Ustunol Z, Pestka JJ. Potentiation of hydrogen peroxide, nitric oxide, and cytokine production in RAW 264.7 macrophage cells exposed to human and commercial isolates of Bifidobacterium. Int. J. Food Microbiol. 46: 231–241 (1999)CrossRefGoogle Scholar
  18. 18.
    Saarela M, Virkajärvi I, Alakomi HL, Sigvart-Mattila P, Mättö J. Stability and functionality of freeze-dried probiotic Bifidobacterium cells during storage in juice and milk. Int. Dairy J. 16: 1477–1482 (2006)CrossRefGoogle Scholar
  19. 19.
    Saarela M, Hallamaa K, Mattila-Sandholm T, Mättö J. The effect of lactose derivatives lactulose, lactitol and lactobionic acid on the functional and technological properties of potentially probiotic Lactobacillus strains. Int. Dairy J. 13: 291–302 (2003)CrossRefGoogle Scholar
  20. 20.
    Jacobsen CN, Nielsen VR, Hayford A, Møller P, Michaelsen K, Paerregaard A, Sandström B, Tvede M, Jakobsen M. Screening of probiotic activities of fortyseven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans. Appl. Environ. Microb. 65: 4949–4956 (1999)Google Scholar
  21. 21.
    Lee SH, Yang EH, Kwon HS, Kang JH, Kang BH. Potential probiotic properties of Lactobacillus johnsonii IDCC 9203 isolated from infant feces. Microbiol. Biotechnol. Lett. 36: 121–127 (2008)Google Scholar
  22. 22.
    Saito S, Strelchenko N, Niemann H. Bovine embryonic stem cell-like cell lines cultured over several passages. Roux’s Arch. Dev. Biol. 201: 134–141 (1992)CrossRefGoogle Scholar
  23. 23.
    Marletta MA. Nitric oxide synthase structure and mechanism. J. Biol. Chem. 268: 12231–12234 (1993)Google Scholar
  24. 24.
    Hibbs Jr J. Synthesis of nitric oxide from L-arginine: A recently discovered pathway induced by cytokines with antitumour and antimicrobial activity. Res. Immunol. 142: 565–569 (1991)CrossRefGoogle Scholar
  25. 25.
    Nathan CF, Hibbs Jr JB. Role of nitric oxide synthesis in macrophage antimicrobial activity. Curr. Opin. Immunol. 3: 65–70 (1991)CrossRefGoogle Scholar
  26. 26.
    Korhonen R, Korpela R, Moilanen E. Signalling mechanisms involved in the induction of inducible nitric oxide synthase by Lactobacillus rhamnosus GG, endotoxin, and lipoteichoic acid. Inflammation 26: 207–214 (2002)CrossRefGoogle Scholar
  27. 27.
    Zhang L, Li N, Caicedo R, Neu J. Alive and dead Lactobacillus rhamnosus GG decrease tumor necrosis factor-a-induced interleukin-8 production in Caco-2 cells. J. Nutr. 135: 1752–1756 (2005)Google Scholar
  28. 28.
    Griscavage JM, Wilk S, Ignarro LJ. Inhibitors of the proteasome pathway interfere with induction of nitric oxide synthase in macrophages by blocking activation of transcription factor NF-κB. P. Natl. Acad. Sci. USA 93: 3308–3312 (1996)CrossRefGoogle Scholar
  29. 29.
    Erkkilä S, Petäjä E. Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci. 55: 297–300 (2000)CrossRefGoogle Scholar
  30. 30.
    Jonganurakkun B, Wang Q, Xu SH, Tada Y, Minamida K, Yasokawa D, Sugi M, Hara H, Asano K. Pediococcus pentosaceus NB-17 for probiotic use. J. Biosci. Bioeng. 106: 69–73 (2008)CrossRefGoogle Scholar
  31. 31.
    Jin LZ, Ho YW, Abdullah N, Jalaludin S. Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett. Appl. Microbiol. 27: 183–185 (1998)CrossRefGoogle Scholar
  32. 32.
    Saito T, Lim KS. Immunogenicity and survival strategy of Lactobacillus rhamnosus GG in the human gut. Korean J. Dairy Sci. Technol. 30: 31–36 (2012)Google Scholar
  33. 33.
    Morita H, He F, Fuse T, Ouwehand AC, Hashimoto H, Hosoda M, Mizumachi K, Kurisaki Ji. Adhesion of lactic acid bacteria to Caco2 cells and their effect on cytokine secretion. Microbiol. Immunol. 46: 293–297 (2002)CrossRefGoogle Scholar
  34. 34.
    Tuomolan EM, Salminen SJ. Adhesion of some probiotic and dairy Lactobacillus strains to Caco-2 cell cultures. Int. J. Food. Microbiol. 41: 45–51 (1998)CrossRefGoogle Scholar
  35. 35.
    Lee JM. Adhesion of kimchi Lactobacillus strains to Caco-2 cell membrane and sequestration of aflatoxin B1. J. Korean Soc. Food Sci. Nutr. 34: 581–585 (2005)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Yeo-Ul Park
    • 1
  • Myo-Deok Kim
    • 1
  • Dong-Hyun Jung
    • 1
  • Dong-Ho Seo
    • 2
  • Jong-Hyun Jung
    • 3
  • Jae-Gwang Park
    • 4
  • Sung-Youl Hong
    • 4
  • Jae-Youl Cho
    • 4
  • Sun-Young Park
    • 5
  • Jong-Wook Park
    • 5
  • Woo-Chang Shin
    • 5
  • Cheon-Seok Park
    • 1
    Email author
  1. 1.Graduate School of Biotechnology and Institute of Life Science and ResourcesKyung Hee UniversityYongin, GyeonggiKorea
  2. 2.Korea Food Research InstituteSeongnam, GyeonggiKorea
  3. 3.Korea Atomic Energy Research InstituteJeongeup, JeonbukKorea
  4. 4.Department of Genetic EngineeringSungkyunkwan UniversitySuwon, GyeonggiKorea
  5. 5.Research Laboratory, Kooksoondang Brewery Co. Ltd.SeoulKorea

Personalised recommendations