Skip to main content
Log in

Plasticization and moisture sensitivity of potato peel-based biopolymer films

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated the effects of the addition of glycerol and high-pressure homogenization on the moisture sensitivity of potato peel-based films (PP films). The films were formed by casting a 3% (w/v) PP suspension containing either a 30 or 50% (w/w, dry basis) glycerol, which was high-pressure homogenized at 69, 138, or 207 MPa with 2, 5, or 10 passes. The elastic modulus and viscosity values were high when the suspensions were treated at 207 MPa with 5 and 10 passes. The moisture sorption isotherms, water diffusivity, and water vapor permeability values were higher in films with 50% glycerol. The findings indicate that high pressures and high pass numbers resulted in anti-plasticization in the film matrix, while the high concentration of glycerol in the film formulation plasticized the film. Thus, the moisture sensitivity of the PP film can be modulated by controlling the homogenization parameters and the glycerol concentration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Perez-Gago MB, Nadaud P, Krochta JM. Water vapor permeability, solubility and tensile properties of heat-denatured versus native whey protein films. J. Food Sci. 64: 1034–1037 (1999)

    Article  CAS  Google Scholar 

  2. Kang HJ, Min SC. Potato peel-based biopolymer film development using highpressure homogenization, irradiation, and ultrasound. LWT-Food Sci. Technol. 43: 903–909 (2010)

    Article  CAS  Google Scholar 

  3. Sothornvit R, Krochta JM. Plasticizer effect on mechanical properties of α-lactoglobulin films. J. Food Eng. 50: 149–155 (2001)

    Article  Google Scholar 

  4. Sothornvit R, Krochta JM. Plasticizer effect on oxygen permeability of betalactoglobulin films. J. Agr. Food Chem. 48: 6298–6302 (2000)

    Article  CAS  Google Scholar 

  5. Talja RA, Helen H, Roos YH, Jouppila KJ. Effect of type and content of binary polyol mixtures on physical and mechanical properties of starch-based edible films. Carbohyd. Polym. 71: 269–276 (2008)

    Article  CAS  Google Scholar 

  6. Sablani SS, Dasse F, Bastarrachea L, Dhawan S, Hendrix KM, Min SC. Apple peelbased edible film development using a highpressure homogenization. J. Food Sci. 74: E372–E381 (2009)

    Article  CAS  Google Scholar 

  7. Hendrix KM, Morra MJ, Lee HB, Min SC. Defatted mustard seed meal-based biopolymer film development. Food Hydrocolloid. 26: 118–125 (2012)

    Article  CAS  Google Scholar 

  8. Kristo E, Biliaderis CG. Physical properties of starch nanocrystal-reinforced pullulan films. Carbohyd. Polym. 68: 146–158 (2007)

    Article  CAS  Google Scholar 

  9. Hayes MG, Kelly AL. High pressure homogenisation of raw whole bovine milk effects on fat globule size and other properties. J. Dairy Res. 70: 297–305 (2003)

    Article  CAS  Google Scholar 

  10. McHugh TH, Krochta JM. Sorbitol- vs glycerol-plasticized whey protein edible films: Integrated oxygen permeability and tensile property evaluation. J. Agr. Food Chem. 42: 841–845 (1994)

    Article  CAS  Google Scholar 

  11. Biliaderis CG, Lazaridou A, Arvanitoyannis I. Glass transition and physical properties of polyol-plasticised pullulan-starch blends at low moisture. Carbohyd. Polym. 40: 29–47 (1999)

    Article  CAS  Google Scholar 

  12. Anker M, Stading M, Hermansson A-M. Effects of pH and the gel state on the mechanical properties, moisture contents, and glass transition temperatures of whey protein films. J. Agr. Food Chem. 47: 1878–1886 (1999)

    Article  CAS  Google Scholar 

  13. Sanchez C, Pouliot M, Renard D, Paquin P. Uniaxial compression of thermal gels based on microfluized blends of WPI and heat-denatured WPI. J. Agr. Food Chem. 47: 1162–1167 (1999)

    Article  CAS  Google Scholar 

  14. Cheng LH, Karim AA, Seow CC. Characterisation of composite films made of konjac glucomannan (KGM), carboxymethyl cellulose (CMC) and lipid. Food Chem. 107: 411–418 (2008)

    Article  CAS  Google Scholar 

  15. Perez-Gago MB, Krochta JM. Denaturation time and temperature effects on oxygen permeability, film solubility and tensile properties of whey protein edible films. J. Food Sci. 66: 705–710 (2001)

    Article  CAS  Google Scholar 

  16. Coma V, Sebti I, Pardon P, Pichavant FH, Deschamps A. Film properties from crosslinking of cellulosic derivatives with a polyfunctional carboxylic acid. Carbohyd. Polym. 51: 265–271 (2003)

    Article  CAS  Google Scholar 

  17. Yang L, Paulson AT. Mechanical and water vapor barrier properties of edible gellan films. Food Res. Int. 33: 563–570 (2000)

    Article  CAS  Google Scholar 

  18. Gontard N, Guilbert S, Cuq JL. Water and glycerol as plasticizers affect mechanical and water vapor barrier properties of an edible wheat film. J. Food Sci. 58: 206–211 (1993)

    Article  CAS  Google Scholar 

  19. Müller CMO, Yamashita F, Laurindo JB. Evaluation of the effects of glycerol and sorbitol concentration and water activity on the water barrier properties of cassava starch films through a solubility approach. Carbohyd. Polym. 72: 82–87 (2008)

    Article  Google Scholar 

  20. Minelli M, Baschetti MG, Doghieri F, Ankerfors M, Lindstrom T, Siro I, Plackett D. Investigation of mass transport properties of microfibrillated cellulose (MFC) films. J. Membrane Sci. 358: 67–75 (2010)

    Article  CAS  Google Scholar 

  21. Moore GRP, Martelli SM, Gandolfo C, Sobral PJA, Laurindo JB. Influence of the glycerol concentration on some physical properties of feather keratin films. Food Hydrocolloid. 20: 975–982 (2006)

    Article  CAS  Google Scholar 

  22. Muscat D, Adhikari R, Tobin MJ, McKnight S, Wakeling L, Adhikari B. Effect of spatial distribution of wax and PEG-isocyanate on the morphology and hydrophobicity of starch films. Carbohyd. Polym. 111: 333–347 (2014)

    Article  CAS  Google Scholar 

  23. Dangaran KL, Cooke P, Tomasula PM. The effect of protein particle size reduction on the physical properties of CO2-precipitated casein films. J. Food Sci. 71: E196–E201 (2006)

    Article  CAS  Google Scholar 

  24. Lee H, Min SC. Development of hijiki-based edible films using high-pressure homogenization. Korean J. Food Sci. Technol. 44: 162–167 (2012)

    Article  Google Scholar 

  25. Cho SY, Rhee C. Mechanical properties and water vapor permeability of edible films made from fractionated soy proteins with ultrafiltration. LWT-Food Sci. Technol. 37: 833–839 (2004)

    Article  CAS  Google Scholar 

  26. Kim D, Min SC. Trout skin gelatinbased edible film development. J. Food Sci. 77: E240–E246 (2012)

    Article  CAS  Google Scholar 

  27. AvenaBustillos RJ, Olsen CW, Olson DA, Chiou B, Yee E, Bechtel PJ, McHugh TH. Water vapor permeability of mammalian and fish gelatin films. J. Food Sci. 71: E202–E207 (2006)

    Article  CAS  Google Scholar 

  28. Arvanitoyannis I, Biliaderis CG. Physical properties of polyol-plasticized edible blends made of methyl cellulose and soluble starch. Carbohyd. Polym. 38: 47–58 (1999)

    Article  CAS  Google Scholar 

  29. Sobral PJA, Menegalli FC, Hubinger MD, Roques MA. Mechanical, water vapor barrier and thermal properties of gelatin based edible films. Food Hydrocolloid. 15: 423–432 (2001)

    Article  CAS  Google Scholar 

  30. Talja RA, Peura M, Serimaa R, Jouppila K. Effect of amylose content on physical and mechanical properties of potato-starch-based edible films. Biomacromolecules 9: 658–663 (2008)

    Article  CAS  Google Scholar 

  31. Vargas M, Pastor C, Chiralt A, McClements DJ, González-Martínez C. Recent advances in edible coatings for fresh and minimally processed fruits. Crit. Rev. Food Sci. 48: 496–511 (2008)

    Article  CAS  Google Scholar 

  32. Rogols S, Sirovatka DM, Widmaier RG. Composite food product comprising potato peel product. U.S. Patent 6,524,639 (2003)

    Google Scholar 

  33. Were L, Hettiarachchy NS, Coleman M. Properties of cysteine-added soy protein-wheat gluten films. J. Food Sci. 64: 514–518 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sea C. Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, H.J., Won, M.Y., Lee, S.J. et al. Plasticization and moisture sensitivity of potato peel-based biopolymer films. Food Sci Biotechnol 24, 1703–1710 (2015). https://doi.org/10.1007/s10068-015-0221-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0221-x

Keywords