Advertisement

Food Science and Biotechnology

, Volume 24, Issue 4, pp 1481–1486 | Cite as

Impact of tempeh supplementation on mucosal immunoglobulin A in Sprague-Dawley rats

  • Susan Soka
  • Antonius SuwantoEmail author
  • Dondin Sajuthi
  • Iman Rusmana
Research Article

Abstract

Tempeh, a well-known Indonesian fermented food made from soybeans, results from mixed-culture fermentation using a diverse group of microorganisms. The presence of many nonviable microorganisms in cooked tempeh may trigger responses in the immune system. Thirty female Sprague-Dawley rats were fed a standard diet supplemented with either non-fermented soybeans or tempeh (uncooked or cooked), for 28 days. Gene expression of intestinal immunoglobulin A (IgA) was analyzed using semi-quantitative real-time PCR, and intestinal IgA was further quantified from the ileum wash using ELISA. There was no significant (p>0.05) difference in IgA gene expression between animals groups receiving feed supplemented with cooked or uncooked tempeh. However, a significant (p<0.05) difference was observed between animals receiving feed supplemented with tempeh and with non-fermented soybeans. Microbial cells in tempeh might increase IgA protein secretion.

Keywords

tempeh soybean immunoglobulin A mucosal immunity gene expression 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    FAO/WHO. Report of a joint FAO/WHO expert consultation on guidelines for the evaluation of probiotics in food. World Health of the United Nations Organization and Food and Agriculture Organization, London, Canada (2002)Google Scholar
  2. 2.
    Kataria J, Li N, Wynn JL, Neu J. Probiotic microbes: Do they need to be alive to be beneficial? Nutr. Rev. 67: 546–550 (2009)CrossRefGoogle Scholar
  3. 3.
    Adams CA. The probiotic paradox: Live and dead cells are biological response modifiers. Nutr. Res. Rev. 23: 37–46 (2010)CrossRefGoogle Scholar
  4. 4.
    Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concepts). Genes Nutr. 6: 261–274 (2011)CrossRefGoogle Scholar
  5. 5.
    Harris NL, Spoerri I, Schopfer JF, Nembrini C, Merky P, Massacand J, Urban JF Jr, Lamarre A, Burki K, Odermatt B, Zinkernagel RM, Macpherson AJ. Mechanisms of neonatal mucosal antibody protection. J. Immunol. 177: 6256–6262 (2006)CrossRefGoogle Scholar
  6. 6.
    Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature 489: 231–241 (2012)CrossRefGoogle Scholar
  7. 7.
    Kaetzel CS, Mostov K. Immunoglobulin transport and the polymeric immunoglobulin receptor. Vol. 1, pp. 211–250. In: Mucosal Immunology. Mestechky J, Lam JT, Strober W, Bienenstock J, McGee DW, Mayer L (eds). Elsevier, Amsterdam, Netherlands (2005)CrossRefGoogle Scholar
  8. 8.
    Okada N. Role of microorganisms in tempeh manufacture-Isolation of vitamin B12 producing bacteria. JARQ- Jpn. Agr. Res. Q. 22: 310–316 (1989)Google Scholar
  9. 9.
    Astuti M, Meliala A, Dalais FS, Wahlqvist ML. tempeh, a nutritious and healthy food from Indonesia. Asia Pac. J. Clin. Nutr. 9: 322–325 (2000)CrossRefGoogle Scholar
  10. 10.
    Babu PD, Bhakyaraj R, Vidhyalakshmi R. A low cost nutritional food “tempeh”- A review. World J. Dairy Food Sci. 4: 22–27 (2009)Google Scholar
  11. 11.
    Dixit AK, Antony JIX, Sharma NK, Tiwari RK. Soybean constituents and their functional benefits. pp. 367–383. In: Opportunity, Challenge and Scope of Natural Products in Medicinal Chemistry. Tiwari VK, Mishra BB (eds.) Research Signpost, Kerala, India (2011)Google Scholar
  12. 12.
    Barus T, Suwanto A, Wahyudi AT, Wijaya H. Role of bacteria in tempe bitter taste formation: Microbiological and molecular biological analysis based on 16S rRNA gene. Microbiol. Indones. 2: 17–21 (2008)CrossRefGoogle Scholar
  13. 13.
    Seumahu CA, Suwanto A, Rusmana I, Solihin DD. Comparison of DNA extraction methods for microbial community analysis in Indonesian tempe employing amplified ribosomal intergenic spacer analysis. HAYATI J. Biosci. 19: 93–98 (2012)CrossRefGoogle Scholar
  14. 14.
    Perez-Cano FJ, Ramírez-Santana C, Molero-Luís M, Castell M, Rivero M, Castellote C, Franch A. Mucosal IgA increase in rats by continuous CLA feeding during suckling and early infancy. J. Lipid Res. 50: 467–476 (2009)CrossRefGoogle Scholar
  15. 15.
    Massot-Cladera M, Pérez-Berezo T, Franch A, Castell M, Pérez-Cano FJ. Cocoa modulatory effect on rat faecal microbiota and colonic crosstalk. Arch. Biochem. Biophys. 527: 105–112 (2012)CrossRefGoogle Scholar
  16. 16.
    Dréau D, Lallès JP, Philouze-Romé V, Toullec R, Salmon H. Local and systemic immune responses to soybean protein ingestion in early-weaned pigs. J. Anim. Sci. 72: 2090–2098 (1994)Google Scholar
  17. 17.
    Lallès JP, Dréau D, Huet A, Toullec R. Systemic and local gutspecific antibody responses in pre-ruminant calves sensitive to soya. Res. Vet. Sci. 59: 56–60 (1995)CrossRefGoogle Scholar
  18. 18.
    Mowat AM. Anatomical basis of tolerance and immunity to intestinal antigens. Nat. Rev. Immunol. 3: 331–341 (2003)CrossRefGoogle Scholar
  19. 19.
    Cerutti A, Chen K, Chomy A. Immunoglobulin responses at the mucosal interface. Annu. Rev. Immunol. 29: 273–293 (2011)CrossRefGoogle Scholar
  20. 20.
    Reyna-Garfias H, Miliar A, Jarillo-Luna A, Rivera-Aguilar V, Pacheco-Yepez J, Baeza I, Campos-Rodriguez R. Repeated restraint stress increases IgA concentration in rat small intestine. Brain Behav. Immun. 24: 110–118 (2010)CrossRefGoogle Scholar
  21. 21.
    Schrenzenmeir J, de Vrese M. Probiotics, prebiotics, and synbiotics: Approaching a definition. Am. J. Clin. Nutr. 73: 361–364 (2001)Google Scholar
  22. 22.
    Philpott DJ, Girardin SE. The role of Toll-like receptors and Nod proteins in bacterial infection. Mol. Immunol. 41: 1099–1108 (2004)CrossRefGoogle Scholar
  23. 23.
    Sakai Y, Tsukahara T, Matsubara N, Ushida K. A cell wall preparation of Enterococcus faecalis strain EC-12 stimulates β-defensin expression in newly hatched broiler chicks. Anim. Sci. J. 78: 92–97 (2007)CrossRefGoogle Scholar
  24. 24.
    Marin ML, Lee JH, Murtha J, Ustunol Z, Pestka JJ. Differential cytokine production in clonal macrophage and T-cell lines cultured with bifidobacteria. J. Dairy Sci. 80: 2713–2720 (1997)CrossRefGoogle Scholar
  25. 25.
    Torii A, Torii S, Fujiwara S, Tanaka H, Inagaki N, Nagai H. Lactobacillus acidophilus strain L-92 regulates the production of Th1 cytokine as well as Th2 cytokines. Allergol. Int. 56: 293–301 (2007)CrossRefGoogle Scholar
  26. 26.
    Taverniti V, Guglielmetti S. The immunomodulatory properties of probiotic microorganisms beyond their viability (ghost probiotics: proposal of paraprobiotic concepts). Genes Nutr. 6: 261–274 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Susan Soka
    • 1
    • 3
  • Antonius Suwanto
    • 1
    Email author
  • Dondin Sajuthi
    • 2
  • Iman Rusmana
    • 1
  1. 1.Department of Biology, Faculty of Mathemathics and Natural SciencesBogor Agricultural UniversityBogorIndonesia
  2. 2.Primate Research CenterBogor Agricultural UniversityBogorIndonesia
  3. 3.Faculty of BiotechnologyAtma Jaya Catholic University of IndonesiaJakartaIndonesia

Personalised recommendations