Skip to main content
Log in

Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The simultaneous saccharification and fermentation (SSF) process is a promising strategy to obtain ethanol from cellulosic biomass. In this study, sugarcane bagasse was supplemented with ricotta whey to increase the sugar, vitamin, and trace metal concentrations in the fermentation medium. The optimum conditions for SSF ethanol production from a mixture of sugarcane bagasse and ricotta whey produced by Kluyveromyces marxianus CCT 7735 were evaluated considering five factors: cellulase concentration, cellulosic biomass concentration, pH, temperature, and agitation. The highest ethanol yield was 49.65 g/L with a cellulosic biomass of 80 g/L, pH value of 5.05, agitation at 65 rpm and temperature of 39.2°C. The results demonstrated that a mixture of the cellulosic residue of sugarcane bagasse and ricotta whey is promising for ethanol production because the ethanol yield in the mixture was higher than that in single substrate of sugarcane bagasse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biofuels Platform. ENERS Energy Concept. Production of biofuels in the world. Available from: http://www.biofuels-platform.ch/en/infos/production.php?id=bio-ethanolN. Accessed: Feb. 26, 2010.

  2. Paulová L, Patáková P, Branská B, Rychtera M, Melzoch K. Lignocellulosic ethanol: Technology design and its impact on process efficiency. Biotechnol. Adv. In press (2014)

    Google Scholar 

  3. Canilha L, Chandel AK, dos Santos-Milessi TS, Fernandes-Antunes FA, da Costa-Freitas WL, das Graças-Almeida-Felipe M, da Silva SS. Bioconversion of sugarcane biomass into ethanol: An overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification, and ethanol fermentation. J. Biomed. Biotechnol. 2012: 1–15 (2012)

    Article  Google Scholar 

  4. Liu G, Qin Y, Li Z, Qu Y. Development of highly efficient, low-cost lignocellulolytic enzyme systems in the post-genomic era. Biotechnol. Adv. 31: 962–975 (2013)

    Article  CAS  Google Scholar 

  5. Doran-Peterson J, Jangid A, Brandon SK, DeCrescenzo-Henriksen E, Dien B, Ingram LO. Simultaneous saccharification and fermentation and partial saccharification and co-fermentation of lignocellulosic biomass for ethanol production. Methods Mol. Biol. 581: 263–280 (2009)

    Article  CAS  Google Scholar 

  6. De Souza CJA, Costa DA, Rodrigues MQRB, dos Santos AF, Lopes MR, Abrantes ABP, dos Santos-Costa P, Silveira WB, Passos FML, Fietto LG. The influence of presaccharification, fermentation temperature and yeast strain on ethanol production from sugarcane bagasse. Bioresource Technol. 109: 63–69 (2012)

    Article  Google Scholar 

  7. Silveira WB, Passos FJV, Mantovani HC, Passos FML. Ethanol production from cheese whey permeate by Kluyveromyces marxianus UFV-3: A flux analysis of oxido-reductive metabolism as a function of lactose concentration and oxygen levels. Enzyme Microb. Tech. 36: 930–936 (2005)

    Article  CAS  Google Scholar 

  8. Sansonetti S, Curcio S, Calabrò V, Iorio G. Bio-ethanol production of ricotta cheese-whey as an effective alternative non-vegetable source. Biomass Bioenerg. 33: 1687–1692 (2009)

    Article  CAS  Google Scholar 

  9. Panesar PS, Kennedy JF, Gandhi DN, Bunko K. Bioutilization of whey for lactic acid production. Food Chem. 105: 1–14 (2007)

    Article  CAS  Google Scholar 

  10. Sansonetti S, Curcio S, Calabrò V, Iorio G. Optimization of ricotta cheese whey (RCW) fermentation by response surface methodology. Bioresource Technol. 101: 9156–9162 (2010)

    Article  CAS  Google Scholar 

  11. Zoppellari F, Bardi L. Production of bioethanol from effluents of the dairy industry by Kluyveromyces marxianus. New Biotechnol. 30: 607–613 (2013)

    Article  CAS  Google Scholar 

  12. Sassner P, Galbe M, Zacchi G. Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenerg. 32: 422–430 (2008)

    Article  CAS  Google Scholar 

  13. Mawson AJ. Bioconversions for whey utilization and waste abatement. Bioresource Technol. 47: 195–203 (1994)

    Article  CAS  Google Scholar 

  14. Giovanni M. Response surface methodology and product optimization. J. Food Technol. 37: 41–45 (1983)

    Google Scholar 

  15. Soccol CR, Vandenberghe LP, Medeiros AB, Karp SG, Buckeridge M, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LM, Ferrara MA, da Silva-Bon EP, de Moraes LM, Araújo JA, Torres FA. Bioethanol from lignocelluloses: Status and perspectives in Brazil. Bioresource Technol. 101: 4820–4825 (2010)

    Article  CAS  Google Scholar 

  16. Chandel AK, Antunes FAF, Silva MB, da Silva SS. Unraveling the structure of sugarcane bagasse after soaking in concentrated aqueous ammonia (SCAA) and ethanol production by Scheffersomyces (Pichia) stipitis. Biotechnol. Biofuels 6: 102 (2013)

    Article  CAS  Google Scholar 

  17. Choi WI, Park JY, Lee JP, Oh YK, Park YC, Kim JS, Park JM, Kim CH, Lee JS. Optimization of NaOH-catalyzed steam pretreatment of empty fruit bunch. Biotechnol. Biofuels 6: 170 (2013)

    Article  Google Scholar 

  18. Suriyachai N, Weerasaia K, Laosiripojana N, Champreda V, Unrean P. Optimized simultaneous saccharification and co-fermentation of rice straw for ethanol production by Saccharomyces cerevisiae and Scheffersomyces stipitis co-culture using design of experiments. Bioresource Technol. 142: 171–178 (2013)

    Article  CAS  Google Scholar 

  19. Galbe M, Sassner P, Wingren A, Zacchi G. Process engineering economics of bioethanol production. pp. 303–327. In: Biofuels-Olsson L (ed). Springer, Berlin/Heidelberg, Germany (2007)

  20. Dragone G, Mussatto SI, Almeida e Silva JB, Teixeira JA. Optimal fermentation conditions for maximizing the ethanol production by Kluyveromyces fragilis from cheese whey powder. Biomass Bioenerg. 35: 1977–1982 (2011)

    Article  CAS  Google Scholar 

  21. Diniz RHS, Silveira WB, Fietto LG, Passos FM. The high fermentative metabolism of Kluyveromyces marxianus UFV-3 relies on the increased expression of key lactose metabolic enzymes. A. Van Leeuw. J. Microb. 101: 541–550 (2012)

    Article  CAS  Google Scholar 

  22. Ballesteros M, Oliva JM, Negro MJ, Manzanares P, Ballesteros I. Ethanol from lignocellulosic materials by a simultaneous saccharification and fermentation process (SFS) with Kluyveromyces marxianus CECT 10875. Process Biochem. 39: 1843–1848 (2004)

    Article  CAS  Google Scholar 

  23. Diniz RHS, Rodrigues MQRB, Fietto LG, Passos FML, Silveira WB. Optimizing and validating the production of ethanol from cheese whey permeate by Kluyveromyces marxianus UFV-3. Biocatal. Agric. Biotechnol. 3: 111–117 (2014)

    Google Scholar 

  24. Abdel-Banat BM, Hoshida H, Ano A, Nonklang S, Akada R. Hightemperature fermentation: How can processes for ethanol production at high temperatures become superior to the traditional process using mesophilic yeast? Appl. Microbiol. Biot. 85: 861–867 (2010)

    Article  CAS  Google Scholar 

  25. Ghaly AE, Kamal MA. Submerged yeast fermentation of acid cheese whey for protein production and pollution potential reduction. Water Res. 38: 631–644 (2004)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendel Batista da Silveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, P.G., da Silveira, F.A., dos Santos, R.C.V. et al. Optimizing ethanol production by thermotolerant Kluyveromyces marxianus CCT 7735 in a mixture of sugarcane bagasse and ricotta whey. Food Sci Biotechnol 24, 1421–1427 (2015). https://doi.org/10.1007/s10068-015-0182-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0182-0

Keywords

Navigation