Skip to main content
Log in

Headspace gas chromatography (HS-GC) analysis of imperative flavor compounds in Lactobacilli-fermented barley and malt substrates

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The kinetics of volatile flavor compounds produced during the fermentation of cereal substrates inoculated with potentially probiotic lactobacilli were determined by HSGC. Barley and malt substrates were single cultured with Lactobacillus acidophilus, Lactobacillus reuteri, and Lactobacillus plantarum. The volatile flavor profiles were unique for each of the formulations. Acetaldehyde, acetone and ethyl acetate concentrations (2.86, 1.82, and 0.39 mg/ L, respectively) were significantly higher in L. plantarum fermented malt substrates. L. reuteri produced greater values of ethanol in the malt medium (2,300 mg/L) and the three lactobacilli strains produced diacetyl only in the malt substrate. These results suggest that the cereal substrate plays a meaningful role for the production of imperative flavor compounds in Lactobacillus-fermentations. Furthermore, the enzymatic systems of particular lactobacilli strains have the ability to produce flavor compounds at concentrations that can significantly influence the organoleptic quality of non-dairy fermented products for potential development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Minocha A. Probiotics for preventive health. Nutr. Clin. Pract. 24: 227–241 (2009)

    Article  Google Scholar 

  2. Coda R, Lanera A, Trani A, Gobbetti M, Di Cagno R. Yogurt-like beverages made of a mixture of cereals, soy and grape must: Microbiology, texture, nutritional and sensory properties. Int. J. Food Microbiol. 155: 120–127 (2012)

    Article  CAS  Google Scholar 

  3. Frost-Sullivan. Strategic Analysis of the European Food and Beverage Probiotics Markets. Frost & Sullivan Ltd., iMountain View, CA, USA. Publication no. B956–88. (2007)

  4. Martins EMF, Ramos AM, Vanzela ESL, Stringheta PC, de Oliveira Pinto CL, Martins JM. Products of vegetable origin: A new alternative for the consumption of probiotic bacteria. Food Res. Int. 51: 764–770 (2013)

    Article  CAS  Google Scholar 

  5. Herrera-Ponce A, Nevárez-Morillón G, Ortega-Rívas E, Pérez-Vega S, Salmerón I. Fermentation adaptability of three probiotic Lactobacillus strains to oat, germinated oat and malted oat substrates. Lett. Appl. Microbiol. 59: 449–456 (2014)

    Article  CAS  Google Scholar 

  6. Michida H, Tamalampudi S, Pandiella SS, Webb C, Fukuda H, Kondo A. Effect of cereal extracts and cereal fiber on viability of Lactobacillus plantarum under gastrointestinal tract conditions. Biochem. Eng. J. 28: 73–78 (2006)

    Article  Google Scholar 

  7. Charalampopoulos D, Pandiella SS, Webb C. Evaluation of the effect of malt, wheat, and barley extracts on the viability of potentially probiotic lactic acid bacteria under acidic conditions. Int. J. Food Microbiol. 82: 133–141 (2003)

    Article  CAS  Google Scholar 

  8. Chattopadhyay S, Raychaudhuri U, Chakraborty R. Optimization of soy dessert on sensory, color, and rheological parameters using response surface methodology. Food Sci. Biotechnol. 22: 47–54 (2013)

    Article  Google Scholar 

  9. Fonteles TV, Costa MGM, de Jesus ALT, Fontes CPML, Fernandes FAN, Rodrigues S. Stability and quality parameters of probiotic cantaloupe melon juice produced with sonicated juice. Food Bioprocess Tech. 6: 2860–2869 (2013)

    Article  CAS  Google Scholar 

  10. Luana N, Rossana C, Curiel JA, Kaisa P, Marco G, Rizzello CG. Manufacture and characterization of a yogurt-like beverage made with oat flakes fermented by selected lactic acid bacteria. Int. J. Food Microbiol. 185: 17–26 (2014)

    Article  CAS  Google Scholar 

  11. Matias NS, Bedani R, Castro IA, Saad SMI. A probiotic soy-based innovative product as an alternative to petit-suisse cheese. LWTFood Sci. Technol. 59: 411–417 (2014)

    CAS  Google Scholar 

  12. Pereira ALF, Almeida FDL, de Jesus ALT, da Costa JMC, Rodrigues S. Storage stability and acceptance of probiotic beverage from cashew apple juice. Food Bioprocess Tech. 6: 3155–3165 (2013)

    Article  CAS  Google Scholar 

  13. Salmerón I, Rozada R, Thomas K, Ortega-Rivas E, Pandiella SS. Sensory characteristics and volatile composition of a cereal beverage fermented with Bifidobacterium breve NCIMB 702257. Food Sci. Technol. Int. 20: 205–213 (2014)

    Article  Google Scholar 

  14. Ott A, Germond J-E, Baumgartner M, Chaintreau A. Aroma Comparisons of traditional and mild yogurts: Headspace gas chromatography quantification of volatiles and origin of a- diketones. J. Agr. Food Chem. 47: 2379–2385 (1999)

    Article  CAS  Google Scholar 

  15. Barron LJR, Redondo Y, Aramburu M, Perez-Elortondo FJ, Albisu M, Najera AI, de-Renobales M. Variations in volatile compounds and flavor in idiazabal cheese manufactured from ewe’s milk in farmhouse and factory. J. Sci. Food Agr. 85: 1660–1671 (2005)

    Article  CAS  Google Scholar 

  16. Beshkova DM, Simova ED, Frengova GI, Simov ZI, Dimitrov ZP. Production of volatile aroma compounds by kefir starter cultures. Int. Dairy J. 13: 529–535 (2003)

    Article  CAS  Google Scholar 

  17. Meilgaard MC. Individual differences in sensory threshold for aroma chemicals added to beer. Food Qual. Prefer. 4: 153–167 (1993)

    Article  Google Scholar 

  18. Hugenholtz J, Starrenburg MJC. Diacetyl production by different strains of Lactococcus lactis subsp. lactis var. diacetylactis and Leuconostocs spp. Appl. Microbiol. Biot. 38: 17–22 (1992)

    Article  CAS  Google Scholar 

  19. Kopsahelis N, Kanellaki M, Bekatorou A. Low temperature brewing using cells immobilized on brewer’s spent grains. Food Chem. 104: 480–488 (2007)

    Article  CAS  Google Scholar 

  20. Muyanja CMBK, Narvhus JA, Treimo J, Langsrud T. Isolation, characterisation and identification of lactic acid bacteria from bushera: A Ugandan traditional fermented beverage. Int. J. Food Microbiol. 80: 201–210 (2003)

    Article  CAS  Google Scholar 

  21. Mugula JK, Nnko SAM, Narvhus JA, Sørhaug T. Microbiological and fermentation characteristics of togwa, a Tanzanian fermented food. Int. J. Food Microbiol. 80: 187–199 (2003)

    Article  CAS  Google Scholar 

  22. Vinderola CG, Costa GA, Regenhardt S, Reinheimer JA. Influence of compounds associated with fermented dairy products on the growth of lactic acid starter and probiotic bacteria. Int. Dairy J. 12: 579–589 (2002)

    Article  CAS  Google Scholar 

  23. Charalampopoulos D, Pandiella SS, Webb C. Growth studies of potentially probiotic lactic acid bacteria in cereal-based substrates. J. Appl. Microbiol. 92: 851–859 (2002)

    Article  CAS  Google Scholar 

  24. Rozada-Sánchez R, Sattur AP, Thomas K, Pandiella SS. Evaluation of Bifidobacterium spp. for the production of a potentially probiotic malt-based beverage. Process Biochem. 43: 848–854 (2008)

    Article  Google Scholar 

  25. Granum PE. Escherichia coli infectious diseases. pp. 57–71. In: Food-borne Infections and Intoxications. Granum PE (ed). Norwegian Academic Press, Kristiansand, Norway (1999)

    Google Scholar 

  26. Cheng HY, Chou CC. Acid adaptation and temperature effect on the survival of E. coli O157:H7 in acidic fruit juice and lactic fermented milk product. Int. J. Food Microbiol. 70: 189–195 (2001)

    Article  CAS  Google Scholar 

  27. Portno AD. The influence of oxygen on the production of diacetyl during fermentation and conditioning. J. I. Brewing 72: 458–461 (1966)

    Article  CAS  Google Scholar 

  28. Nordström K. Formation of ethyl acetate in fermentation with brewer's yeast. J. I. Brewing 67: 173–181 (1961)

    Article  Google Scholar 

  29. Gómez-Míguez MJ, Cacho JF, Ferreira V, Vicario IM, Heredia FJ. Volatile components of Zalema white wines. Food Chem. 100: 1464–1473 (2007)

    Article  Google Scholar 

  30. Gonzalez S, de Ambrosini VM, de Nadra MM, de Ruiz Holgado AP, Oliver G. Acetaldehyde production by strains used as probiotics in fermented milk. J. Food Protect. 57: 436–440 (1994)

    CAS  Google Scholar 

  31. Chaves ACSD, Fernandez M, Lerayer ALS, Mierau I, Kleerebezem M, Hugenholtz J. Metabolic engineering of acetaldehyde production by Streptococcus thermophilus. Appl. Environ. Microb. 68: 5656–5662 (2002)

    Article  CAS  Google Scholar 

  32. Helland MH, Wicklund T, Narvhus JA. Growth and metabolism of selected strains of probiotic bacteria in milk- and water-based cereal puddings. Int. Dairy J. 14: 957–965 (2004)

    Article  CAS  Google Scholar 

  33. Gonçalves JL, Figueira JA, Rodrigues FP, Ornelas LP, Branco RN, Silva CL, Câmara JS. A powerful methodological approach combining headspace solid phase microextraction, mass spectrometry and multivariate analysis for profiling the volatile metabolomic pattern of beer starting raw materials. Food Chem. 160: 266–280 (2014)

    Article  Google Scholar 

  34. Perkowski J, Stuper K, Buoeko M, Góral T, Kaczmarek A, Jeleñ H. Differences in metabolomic profiles of the naturally contaminated grain of barley, oats and rye. J. Cereal Sci. 56: 544–551 (2012)

    Article  CAS  Google Scholar 

  35. Dong L, Piao Y, Zhang X, Zhao C, Hou Y, Shi Z. Analysis of volatile compounds from a malting process using headspace solidphase micro-extraction and GC–MS. Food Res. Int. 51: 783–789 (2013)

    Article  CAS  Google Scholar 

  36. Imhof R, Glättli H, Bosset JO. Volatile organic aroma compounds produced by thermophilic and mesophilic mixed strain dairy starter cultures. LWT-Food Sci. Technol. 27: 442–449 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Salmerón.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmerón, I., Loeza-Serrano, S., Pérez-Vega, S. et al. Headspace gas chromatography (HS-GC) analysis of imperative flavor compounds in Lactobacilli-fermented barley and malt substrates. Food Sci Biotechnol 24, 1363–1371 (2015). https://doi.org/10.1007/s10068-015-0175-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0175-z

Keywords

Navigation