Skip to main content
Log in

Synthesis using a model system of thiacremonone isolated from high temperature and high pressure treated garlic

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The thiacremonone (2,4-dihydroxy-2,5-dimethylthiophene-3-one) produced from high temperature-high pressure (HTHP)-treated garlic. Synthesis of thiacremonone used a model system designed with sugars (fructose and glucose) and amino acids containing a sulfur group (cysteine and methionine). Thiacremonone contents in mixtures of sugars and amino acids were analyzed after heating at 130°C for 2 h. A mixture with 1.5 M fructose and 0.1 M cysteine had the highest thiacremonone content. Thiacremonone contents in mixtures showed temperature and time dependency. The highest thiacremonone content was obtained with HTHP treatment at 130°C for 2 h. Thiacremonone isolated from HTHP-treated garlic and from sugar and amino acid mixtures were the same compound with the same radical scavenging activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Halliwell B. Antioxidants in human health and disease. Annu. Rev. Nutr. 16: 33–50 (1996)

    Article  CAS  Google Scholar 

  2. Morrissey PA, O’Brien NM. Dietary antioxidants in health and disease. Int. Dairy J. 8: 463–472 (1998)

    Article  CAS  Google Scholar 

  3. Halliwell B, Gutteridge JMC. Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem. J. 219: 1–14 (1984)

    CAS  Google Scholar 

  4. Muramatsu H, Kogawa K, Tanaka M, Okumura K, Nishihori Y, Koike K, Kuga T, Niitsu Y. Superoxide dismutase in SAS human tongue carcinoma cell line is a factor defining invasiveness and cell motility. Cancer Res. 55: 6210–6214 (1995)

    CAS  Google Scholar 

  5. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modification of low density lipoprotein that increases its atherogenicity. New Engl. J. Med. 320: 915–924 (1989)

    CAS  Google Scholar 

  6. Hu FB. Dietary pattern analysis: A new direction in nutritional epidemiology. Curr. Opin. Lipidol. 13: 3–9 (2002)

    Article  CAS  Google Scholar 

  7. Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evans C, Roberfroid M, Stahl W, Viña-Ribes J. Functional food science and defense against reactive oxidative species. Brit. J. Nutr. 80S: S77–S112 (1998)

    Article  Google Scholar 

  8. Hwang IG, Woo KS, Kim DJ, Hong JT, Hwang BY, Lee YR, Jeong HS. Isolation and identification of an antioxidant substance from heated garlic (Allium sativum L.). Food Sci. Biotechnol. 16: 963–966 (2007)

    CAS  Google Scholar 

  9. Gehrt A, Erkel, G, Anke T, Sterner O. Thiacremonone, a new inducer of differentiation of mammalian cells from an Acremonium sp. Nat. Prod. Lett. 14: 281–284 (2000)

    Article  CAS  Google Scholar 

  10. Ban JO, Lee HS, Jeong HS, Song S, Hwang BY, Moon DC, Yoon DY, Han SB, Hong JT. Thiacremonone augments chemotherapeutic agent-induced growth inhibition in human colon cancer cells through inactivation of nuclear factor-?B. Mol. Cancer Res. 7: 870–879 (2009)

    Article  CAS  Google Scholar 

  11. Kim TM, Lee HS, Shim TJ, Kim HY, Woo KS, Jeong HS, Kim DJ. Preventive effect of thiacremonone on the hepatocarcinogenesis Initiated by N-nitrosodiethylamine in rats. Food Sci. Biotechnol. 21: 1277–1284 (2012)

    Article  CAS  Google Scholar 

  12. Ban JO, Oh JH, Kim TM, Kim DJ, Jeong HS, Han SB, Hong JT. Anti-inflammatory and arthritic effects of thiacremonone, a novel sulfur compound isolated from garlic via inhibition of NF-?B. Arthritis Res. Ther. 11: R145–R157 (2009)

    Article  Google Scholar 

  13. Ban JO, Lee DH, Kim EJ, Kang JW, Kim MS, Cho MC, Jeong HS, Kim JW, Yang Y, Hong JT, Yoon DY. Antiobesity effects of a sulfur compound thiacremonone mediated via down-regulation of serum triglyceride and glucose levels and lipid accumulation in the liver of db/db mice. Phytother. Res. 26: 1265–1271 (2012)

    Article  CAS  Google Scholar 

  14. Tepe B, Sokmen M, Akpulat HA, Sokmen A. Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chem. 95: 200–204 (2006)

    Article  CAS  Google Scholar 

  15. Lee YR, Woo KS, Kim KJ, Son JR, Jeong HS. Antioxidant activities of ethanol extracts from germinated specialty rough rice. Food Sci. Biotechnol. 16: 765–770 (2007)

    CAS  Google Scholar 

  16. Aruoma OI, Halliwell B, Dizdaroglu M. Iron ino-dependent modification of bases in DNA by the superoxide radical generating system hypoxanthine/xanthine oxidase. J. Biol. Chem. 264: 13024–13028 (1989)

    CAS  Google Scholar 

  17. Marklund S, Marklund G. Involvement of the superoxide anion radical in the antioxidation of pyrogallol a convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469–474 (1974)

    Article  CAS  Google Scholar 

  18. Gray JI, Dugan Jr LR. Inhibition of N-nitrosamine formation in model food systems. J. Food Sci. 40: 981–984 (1975)

    Article  CAS  Google Scholar 

  19. Kim DO, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agr. Food Chem. 50: 3713–3717 (2002)

    Article  CAS  Google Scholar 

  20. Soares JR, Dins TCP, Cunha AP, Almeida LM. Antioxidant activity of some extracts of Thymus zygis. Free Radical Res. 26: 469–478 (1997)

    Article  CAS  Google Scholar 

  21. Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharmacol. 56: 213–222 (1998)

    Article  CAS  Google Scholar 

  22. Bloknina O, Virolainen E, Fagerstedt KV. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot.-London 91: 179–194 (2003)

    Article  Google Scholar 

  23. Cotelle N, Bernier JL, Henichart JP, Catteau JP, Gaydou E, Wallet JC. Scavenger and antioxidant properties of ten synthetic flavoned. Free Radical Bio. Med. 13: 211–219 (1992)

    Article  CAS  Google Scholar 

  24. Lee J, Koo N, Min DB. Reactive oxygen species, aging, and antioxidative nutraceuticals. Compr. Rev. Food Sci. F. 3: 21–33 (2004)

    Article  CAS  Google Scholar 

  25. Radi R, Beckman JS, Bush KM, Freeman BA. Peroxynitriteinduced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 288: 481–487 (1991)

    Article  CAS  Google Scholar 

  26. Pyo YH, Lee TC, Logendra L, Rosen RT. Antioxidant activity and phenolic compounds of Swiss chard (Beta vulgaris subspecies cycla) extracts. Food Chem. 85: 19–26 (2004)

    Article  CAS  Google Scholar 

  27. Kumaran A, Karunakaran RJ. In vitro antioxidant activities of methanol extracts of five Phyllanthus species from India. LWTFood Sci. Technol. 40: 344–352 (2007)

    CAS  Google Scholar 

  28. Sim KH, Han YS. Effect of red pepper seed on kimchi antioxidant activity during fermentation. Food Sci. Biotechnol. 17: 295–301 (2008)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koan Sik Woo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Woo, K.S., Kim, H.Y., Hwang, I.G. et al. Synthesis using a model system of thiacremonone isolated from high temperature and high pressure treated garlic. Food Sci Biotechnol 24, 1279–1284 (2015). https://doi.org/10.1007/s10068-015-0164-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0164-2

Keywords

Navigation