Effect of flower-buds of Panax ginseng fermented by various microorganisms on the activation of T cell immune responses


To improve the health benefits of ginseng flower buds via microbial fermentation, we evaluated the ginsenoside content and in vitro immune-stimulating activities. The flower buds were grouped as control (non-fermented) and those fermented by Bacillus subtilis (FBS), Lactobacillus plantarum (FLP), Lactobacillus casei (FLC), Candida utilis (FCU), Saccharomyces cerevisiae strain CHY1011 (FY1), S. cerevisiae strain ZP541 (FY2), and a mixed strain culture using L. plantarum, L. casei, and C. utilis (FM). Total ginsenoside content in FBS increased higher than that of the control. The expression of IL-1β was found to be higher than that of the control following stimulation by FBS and FY1. IL-2 gene expression was high in FM, and TNFSF14 gene expression increased in FCU- and FY1-treated cells. Considering the differences in the quantities and composition of the ginsenoside, other various polysaccharides or phenolic compounds in fermented ginseng flower-buds would indicate the difference in the activation of immune response.

This is a preview of subscription content, access via your institution.


  1. 1.

    Choi KT. Botanical characteristics pharmacological effects and medicinal components of Korean Panax ginseng CA Meyer. Acta. Pharmacol. Sin. 29: 1109–1118, (2008)

    Article  CAS  Google Scholar 

  2. 2.

    Kim HG, Yoo SR, Park HJ, Lee NH, Shin JW, Sathyanath R, Cho JH, Son CG. Antioxidant effects of Panax ginseng C.A. Meyer in healthy subjects: A randomized, placebo-controlled clinical trial. Food Chem. Toxicol. 49: 2229–2235, (2011)

    Article  CAS  Google Scholar 

  3. 3.

    Shim JY, Kim MH, Kim HD, Ahn JY, Yun YS, Song JY. Protective action of the immunomodulator ginsan against carbon tetrachlorideinduced liver injury via control of oxidative stress and the inflammatory response. Toxicol. Appl. Pharmacol. 242: 318–325, (2010)

    Article  CAS  Google Scholar 

  4. 4.

    Spelman K, Burns J, Nichols D, Winters N, Ottersberg S, Tenborg M. Modulation of cytokine expression by traditional medicines: A review of herbal immunomodulators. Altern. Med. Rev. 11: 128–150, (2006)

    Google Scholar 

  5. 5.

    Lim S, Yoon JW, Choi SH, Cho BJ, Kim JT, Chang HS, Park HS, Park KS, Lee HK, Kim YB, Jang HC. Effect of ginsam, a vinegar extract from Panax ginseng, on body weight and glucose homeostasis in an obese insulin-resistant rat model. Metabolis. 58: 8–15, (2009)

    Article  CAS  Google Scholar 

  6. 6.

    Murphy LL, Lee TJ. Ginseng sex behavior and nitric oxide. Ann. NY. Acad. Sci. 962: 372–377, (2002)

    Article  CAS  Google Scholar 

  7. 7.

    Caso Marasco A, Vargas Ruiz R, Villagomez Salas A, Begona C. Infante Double-blind study of a multivitamin complex supplemented with ginseng extract. Drugs Exp. Clin. Res. 22: 323–329, (1996)

    CAS  Google Scholar 

  8. 8.

    Lu JM, Yao Q, Chen C. Ginseng compounds: An update on their molecular mechanisms and medical applications. Curr. Vasc. Pharmacol. 7: 293–302, (2009)

    Article  CAS  Google Scholar 

  9. 9.

    Choi JE, Li X, Han YH, Lee KT. Changes of saponin contents of leaves, stems and flower-buds of Panax ginseng C.A. Meyer by harvesting days. Korean. J. Med. Crop Sci. 17: 251–256, (2009)

    Google Scholar 

  10. 10.

    Yan L, Kim IH. Effect of dietary grape pomace fermented by Saccharomyces boulardii on the growth performance, nutrient digestibility and meat quality in finishing pigs. Asian Austral. J. Anim. 24: 1763–1770, (2011)

    Article  CAS  Google Scholar 

  11. 11.

    Bae EA, Kim NY, Han MJ, Choo MK, Kim DH. Transformation of ginsenosides to compound K (IH-901) by lactic acid bacteria of human intestine. J. Microbiol. Biotechn. 13: 9–14, (2003)

    CAS  Google Scholar 

  12. 12.

    Chi H, Kim DH, Ji GE. Transformation of ginsenosides Rb2 and Rc from Panax ginseng by food microorganisms. Biol. Pharm. Bull. 28: 2102–2105, (2005)

    Article  CAS  Google Scholar 

  13. 13.

    Chi H, Ji GE. Transformation of ginsenosides Rb1 and Re from Panax ginseng by food microorganisms. Biotechnol. Lett. 27: 765–771 (2005)

    Article  CAS  Google Scholar 

  14. 14.

    Luan HW, Liu X, Qi X, Hu Y, Hao D, Cui Y, Yang L. Purification and characterization of a novel stable ginsenoside Rb1-hydrolyzing β-D-glucosidase from the Chinese white jade snail. Proc. Biochem. 41: 1974–1980, (2006)

    Article  CAS  Google Scholar 

  15. 15.

    Kelly CT, O’Reilly F, Fogarty WM. Extracellular a-glucosidase of an alkalophilic microorganism, Bacillus sp. ATCC 21591. FEMS Microbiol. Lett. 20: 55–59, (1983)

    CAS  Google Scholar 

  16. 16.

    Pajni S, Dhillon N, Vadehra DV, Sharma P. Carboxymethyl cellulase, β-glucosidase, and xylanase production by Bacillus isolates from soil. Int. Biodeterior. 25: 1–5, (1989)

    Article  CAS  Google Scholar 

  17. 17.

    Rowe GE, Margaritis A. Enzyme kinetic properties of α-1,4- glucosidase in Bacillus thuringiensis. Biochem. Eng. J. 17: 121–128, (2004)

    Article  CAS  Google Scholar 

  18. 18.

    Lim SI, Cho CW, Choi UK, Kim YC. Antioxidant activity and ginsenoside pattern of fermented white ginseng. J. Ginseng Res. 34: 168–174, (2010)

    Article  CAS  Google Scholar 

  19. 19.

    Senthil K, Veena V, Mahalakshmi M, Pulla R, Yang DC, Parvatham R. Microbial conversion of major ginsenoside Rb1 to minor ginsenoside Rd by Indian fermented food bacteria. Afr. J. Biotechnol. 8: 6961–6966, (2009)

    CAS  Google Scholar 

  20. 20.

    Ramesh T, Kim SW, Sung JH, Hwang SY, Sohn SH, Yoo SK, Kim SK. Effect of fermented Panax ginseng extract (GINST) on oxidative stress and antioxidant activities in major organs of aged rats. Exp. Gerontol. 47: 77–84, (2012)

    Article  CAS  Google Scholar 

  21. 21.

    Kim GS, Hyun DY, Kim YO, Lee SW, Kim YC, Lee SE, Son YD, Lee MJ, Park CB, Park HK, Cha SW, Song KS. Extraction and preprocessing methods for ginsenosides analysis of Panax ginseng C.A. Mayer. Korean. J. Med. Crop. Sci. 16: 446–454, (2008)

    Google Scholar 

  22. 22.

    Lee NR, Han JS, Kim JS, Choi JE. Effects of extraction temperature and time on ginsenoside content and quality in ginseng (Panax ginseng) flower water extract. Korean. J. Med. Crop. Sci. 19: 271–275 (2011)

    Article  Google Scholar 

  23. 23.

    Lee KS, Seong BJ, Kim GH, Kim SI, Han SH, Kim HH, Baik ND. Ginsenoside, phenolic acid composition, and physiological significances of fermented ginseng leaf. J. Korean Soc. Food Sci. Nutr. 38: 1194–1200, (2010)

    Google Scholar 

  24. 24.

    Kim MK, Lee JW, Lee KY, Yabg DC. Microbial conversion of major ginsenoside Rb1 to pharmaceutically active ninor ginsenoside Rd. J. Microbiol. 43: 465–462, (2005)

    Google Scholar 

  25. 25.

    Li GH, Shen YM, Liu Y, Zhang KQ. Production of saponin in fermentation process of Sanchi (Panax notoginseng) and biotransformation of saponin by Bacillus subtilis. Ann. Microbiol. 56: 151–153, (2006)

    Article  CAS  Google Scholar 

  26. 26.

    Xie JT, Mehendale SR, Li X, Quigg R, Wang XY, Wang CZ, Wu JA, Aung HH, Paul A, Rue PA, Bell GI, Yuan CS. Anti-diabetic effect of ginsenoside Re in ob/ob mice. Biochim. Biophys. Acta 1740: 319–325, (2005)

    Article  CAS  Google Scholar 

  27. 27.

    Ng WY, Yang MS. Effects of ginsenosides Re and Rg3 on intracellular redox state and cell proliferation in C6 glioma cells. Chin. Med. 3: 1–8, (2008)

    Article  Google Scholar 

  28. 28.

    Song X, Chen J, Sakwiwatkul K, Li R, Hu S. Enhancement of immune responses to influenza vaccine (H3N2) by ginsenoside Re. Int. Immunopharmacol. 10: 351–356, (2010)

    Article  CAS  Google Scholar 

  29. 29.

    Christensen LP, Jensen M. Biomass and content of ginsenosides and polyacetylenes in American ginseng roots can be increased without affecting the profile of bioactive compounds. J. Nat. Med. 63: 159–168 (2009)

    Article  CAS  Google Scholar 

  30. 30.

    Nakaya Y, Mawatari K, Takahashi A, Harada N, Hata A, Yasui S. The phytoestrogen ginsensoside Re activates potassium channels of vascular smooth muscle cells through PI3K/Akt and nitric oxide pathways. J. Med. Invest. 54: 381–384, (2007)

    Article  Google Scholar 

  31. 31.

    Zhang G, Liu A, Zhou Y, San Z, Jin T, Jin Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J. Ethnopharmacol. 115: 441–448 (2008)

    Article  CAS  Google Scholar 

  32. 32.

    Zhang JT, Qu ZW, Liu Y, Deng HL. Preliminary study on antiamnestic mechanism of ginsenoside Rg1 and Rb1. Clin. Med. J. 103: 932–938, (1990)

    CAS  Google Scholar 

  33. 33.

    Kronin V, Winkel K, Suss G, Kelso A, Heath W, Kirberg J, Von Boehmer H, Shortman K. A subclass of dendritic cells regulates theresponse of naive CD8 T cells by limiting their IL-2 production. J. Immunol. 157: 3819–3827, (1996)

    CAS  Google Scholar 

  34. 34.

    Kwak YS. Immunomodulatory activity of Korean ginseng (Panax ginseng C.A. Meyer). Food Sci. Ind. 45: 23–38, (2012)

    Google Scholar 

  35. 35.

    Wang H, Peng D, Xie J. Ginseng leaf-stem: Bioactive constituents and pharmacological functions. Chin. Med. 4: 20, (2009)

    Article  Google Scholar 

  36. 36.

    Kim MH, Byon YY, Ko EJ, Song JY, Yun YS, Shin T, Joo HG. Immunomodulatory activity of ginsan, a polysaccharide of Panax ginseng, on dendritic cells. Korean J. Physiol. Pharmacol. 13: 169–173 (2009)

    Article  CAS  Google Scholar 

  37. 37.

    Lee YS, Chung IS, Lee IR, Kim KH, Hong WS, Yun YS. Activation of multiple effector pathways of immune system by the antineoplastic immunostimulator acidic polysaccharide ginsan isolated from Panax ginseng. Anticancer. Res. 17: 323–331, (1997)

    CAS  Google Scholar 

  38. 38.

    Shin JY, Song JY, Yun YS, Yang HO, Rhee DK, Pyo S. Immunostimulating effects of acidic polysaccharides extract of Panax ginseng on macrophage function. Immunopharmacol. Immunotoxicol. 24: 469–482, (2002)

    Article  CAS  Google Scholar 

  39. 39.

    Song JY, Han SK, Son EH, Pyo SN, Yun YS, Yi SY. Induction of secretory and tumoricidal activities in peritoneal macrophages by ginsan. Int. Immunopharmacol. 2: 857–865, (2002)

    Article  CAS  Google Scholar 

  40. 40.

    Song JY, Han SK, Bae KG, Lim DS, Son SJ, Jung IS, Yi SY, Yun YS. Radioprotective effects of ginsan, an immunomodulator. Radiat. Res. 159: 768–774, (2003)

    Article  CAS  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Hong-Sun Yook.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, KH., Kim, SH. & Yook, HS. Effect of flower-buds of Panax ginseng fermented by various microorganisms on the activation of T cell immune responses. Food Sci Biotechnol 24, 1061–1067 (2015). https://doi.org/10.1007/s10068-015-0136-6

Download citation


  • Panax ginseng flower-bud
  • fermented
  • T cell immune response
  • ginsenoside