Skip to main content
Log in

Identification of fungal isolates from steeped yam (Gbodo): Predominance of Meyerozyma guilliermondii

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Gbodo is a traditional Nigerian fermented dried yam food using tubers or slices. Identification of microbes using conventional methods reveals only a fraction of the true microbial community. Forty-five fungal isolates associated with gbodo at 0, 6, 12, 18, and 24 h of steeping/fermentation were identified using molecular techniques. Ribosomal RNA-ITS fragments of genomic DNA were amplified using ITS1 and ITS4 primers and subjected to nuclecotide sequence determination. Meyerozyma gulliermondii represented 56–78% of isolates during 24 h of yam steeping. Sixty-seven percent of all identified isolates were members of the genera Meyerozyma and Pichia. The biodiversity index of fungal isolates increased from 0.33 at 0 h to 0.56 at 12 h. M. guilliermondii exhibited a resilient presence in isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FAO. Food Production, Food and Agricultural Organisation, Rome, Italy. p. 61 (2012)

    Google Scholar 

  2. Akissoe NH, Hounhouigan JD, Mestres C, Nago M. How blanching and drying affect the colour and functional characteristics of yam (Dioscorea cayenensis-rotundata) flour. Food Chem. 82: 257–264 (2003)

    Article  CAS  Google Scholar 

  3. Kordylas JM. Processing and Preservation of Tropical and Subtropical Foods. Macmillan Publishers Ltd., London and Basingstoke, UK. pp. 49–71 (1990)

    Google Scholar 

  4. Akissoe NH, Hounhouigan JD, Bricas N, Vernier P, Nago MC, Olorunda OA. Physical, chemical and sensory evaluation of dried yam (Dioscorea rotundata) tubers, flour, and amala, a flour-drived product. Trop. Sci. 41: 151–155 (2001)

    Google Scholar 

  5. Babajide JM, Henshaw FO, Oyewole OB. Effect of yam variety on the pasting properties and sensory attributes of traditional dry-yam slices and their products. J. Food Quality 31: 295–305 (2008)

    Article  Google Scholar 

  6. Onayemi O, Potter NN. Preparation and storage properties of drum dried white yam (Dioscorea rotundata Poir) flakes. J. Food Sci. 39: 559–562 (1974)

    Article  Google Scholar 

  7. Achi OK, Akubor PI. Microbiological characterization of yam fermentation for ‘Elubo’ (yam flour) production. World J. Microb. Biot. 16: 3–7 (2000)

    Article  Google Scholar 

  8. Babajide JM, Oyewole OB, Obadina OA. An assessment of the microbiological safety of dry yam (gbodo) processed in South West Nigeria. Afr. J. Biotechnol. 5: 157–161 (2006)

    Google Scholar 

  9. Adeyanju SA, Ikotun T. Microorganisms associated with mouldiness of dried yam ships and their prevention. Nahrung 32: 777–781 (1988)

    Article  CAS  Google Scholar 

  10. Giraffa G, Carminati D. Molecular techniques in food fermentation: Principles and applications. pp. 1–30. In: Molecular Techniques in the Microbial Ecology of Fermented Foods. Cocolin L, Ercolini D (eds). Springer, New York, NY, USA (2008)

    Chapter  Google Scholar 

  11. Mokhtari M, Etebarian HR, Razavi M, Heydari A, Mirhendi H. Identification of yeasts isolated from varieties of apples and citrus using PCR-fragment size polymorphism and sequencing of ITS1-5.8S-ITS2 region. Food Biotechnol. 26: 252–265 (2012)

    Article  CAS  Google Scholar 

  12. Alba-Lois L, Segal-Kischinevzky C. Beer and wine makers. Nat. Educ. 3: 17 (2010)

    Google Scholar 

  13. Nout MJR, Sarkar PK. Lactic acid fermentation in tropical climates. A. Van Leeuw. 76: 395–401 (1999)

    Article  CAS  Google Scholar 

  14. International Commission on Microbiological Specifications for Foods (ICMSF). Microorganisms in Foods. 1. Their Significance and Methods of Enumeration. 2nd ed. University of Toronto Press, Toronto, Canada. p. 158 (1978)

    Google Scholar 

  15. Barnett JA, Payne RW, Yarrow D. Yeasts: Characteristics and Identification. Cambridge University Press, Cambridge, UK. p. 86 (1983)

    Google Scholar 

  16. Rogers SO, Bendich AJ. Extraction of DNA from plant, fungal, and algal tissues. pp. 1–8. In: Plant Molecular Biology Manual. Gelvin SB, Schilperoort RA (eds). Kluwer Academic Publishers, Boston, MA, USA (1994)

    Google Scholar 

  17. Hill MO. Diversity and evenness: A unifying notation and its consequences. Ecology 54: 427–432 (1973)

    Article  Google Scholar 

  18. American museum of natural history. Curriculum collections: How to calculate a biodiversity index. Available from: http://www.amnh.org/explore/curriculum-collections/biodiversity-counts/plant-ecology/how-to-calculate-a-biodiversity-index. Accessed Sep. 19, 2013.

    Google Scholar 

  19. Ramos CL, de Almeida EG, Freire AL, Schwan RF. Diversity of bacteria and yeast in the naturally fermented cotton seed and rice beverage produced by Brazilian Amerindians. Food Microbiol. 28: 1380–1386 (2011)

    Article  CAS  Google Scholar 

  20. Wu X, Song R. Pichia guilliermondii strain wxm69 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence. GenBank Direct Submission. HM037942 (2010)

    Google Scholar 

  21. PengY, Chi ZM. Pichia guilliermondii strain PY-14 18S ribosomal RNA gene, partial sequence; internal transcribed spacer 1, 5.8S ribosomal RNA gene, and internal transcribed spacer 2, complete sequence; and 28S ribosomal RNA gene, partial sequence. GenBank Direct Submission. DQ674353 (2006)

    Google Scholar 

  22. Yang SP, Wu ZH, Jian JC. Distribution of marine red yeasts in shrimps and the environments of shrimp culture. Curr. Microbiol. 62: 1638–1642 (2011)

    Article  CAS  Google Scholar 

  23. Coda R, Rizzello CG, Di Cagno R, Trani A, Cardinali G, Gobbetti M. Antifungal activity of Meyerozyma guilliermondii: Identification of active compounds synthesized during dough fermentation and their effect on long-term storage of wheat bread. Food Microbiol. 33: 243–251 (2013)

    Article  Google Scholar 

  24. Petersson S, Schnürer J. Bio-control of mold growth in highmoisture wheat stored under airtight conditions by Pichia anomala, Pichia guilliermondii and Saccharomyces cerevisiae. Appl. Environ. Microb. 61: 1027–1032 (1995)

    CAS  Google Scholar 

  25. Rokas A. The effect of domestication on the fungal proteome. Trends Genet. 25: 60–63 (2009)

    Article  CAS  Google Scholar 

  26. Belloch C, Querol A, Garcýa MD, Barrio E. Phylogeny of the genus Kluyveromyces inferred from the mitochondrial cytochrome-c oxidase II gene. Int. J. Syst. Evol. Micr. 50: 405–416 (2000)

    Article  CAS  Google Scholar 

  27. Gryganskyi AP, Lee SC, Litvintseva AP, Smith ME, Bonito G, Porter TM, Anishchenko IM, Heitman J, Vilgalys R. Structure, function, and phylogeny of the mating locus in the Rhizopus oryzae complex. PLoS ONE 5: 0015273 (2010)

  28. Nwosu VC, Oyeka CA. Microbiological succession occurring during fermentation of Ogi–an african breakfast cereal. J. Elisha Mitch. Sci. S. 114: 190–198 (1998)

    Google Scholar 

  29. Akinrele IA. Fermentation studies on maize during preparation of traditional African starch-cake food. J. Sci. Food Agr. 21: 619–625 (1970)

    Article  CAS  Google Scholar 

  30. Babajide JM, Babajide SO, Oyewole OB. Survey of traditional dryyam slices (gbodo) processing operations in Southwest, Nigeria. Am.-Eurasian J. Sustain. Agric. 1: 45–49 (2007)

    Google Scholar 

  31. Zhang DP, Spadaro D, Valente S, Garibaldi A, Gullino ML. Cloning, characterization and expression of an exo-1,3-ß-glucanase gene from the antagonistic yeast, Pichia guilliermondii strain M8 against grey mold on apples. Biol. Control 59: 284–293 (2011)

    Article  CAS  Google Scholar 

  32. Schirmer-Michel AC, Flores SH, Hertz PF, Matos GS, Ayub MA. Production of ethanol from soybean hull hydrolysate by osmotolerant Candida guilliermondii NRRL Y-2075. Bioresource Technol. 99: 2898–2904 (2008)

    Article  CAS  Google Scholar 

  33. Wah TT, Walaisri S, Assavanig A, Niamsiri N, Lertsiri S. Coculturing of Pichia guilliermondii enhanced volatile flavor compound formation by Zygosaccharomyces rouxii in the model system of Thai soy sauce fermentation. Int. J. Food Microbiol. 160: 282–289 (2013)

    Article  CAS  Google Scholar 

  34. Rodrigues RC, Sene L, Matos GS, Roberto IC, Pessoa A Jr, Felipe MG. Enhanced xylitol production by precultivation of Candida guilliermondii cells in sugarcane bagasse hemicellulosic hydrolysate. Curr. Microbiol. 53: 53–59 (2006)

    Article  CAS  Google Scholar 

  35. Abbas CA, Sibirny AA. Genetic control of biosynthesis and transport of riboflavin and flavin nucleotides and construction of robust biotechnological producers. Microbiol. Mol. Biol. R. 75: 321–360 (2011)

    Article  CAS  Google Scholar 

  36. Guo C, Zhao C, He P, Lu D, Shen A, Jiang N. Screening and characterization of yeasts for xylitol production. J. Appl. Microbiol. 101: 1096–1104 (2006)

    Article  CAS  Google Scholar 

  37. Alka H, Sharma GD. Ethanol production from native yeast isolated from local cultivars of Musa sp. World J. Sci. Technol. 2: 113–117 (2012)

    CAS  Google Scholar 

  38. Savini V, Catavitello C, Onofrillo D, Masciarelli G, Astolfi D, Balbinot A, Febbo F, D’Amario C, D’Antonio D. What do we know about Candida guilliermondii? A voyage throughout past and current literature about this emerging yeast. Mycoses 54: 434–441 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan Modupe Babajide.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babajide, J.M., Maina, S., Kiawa, B. et al. Identification of fungal isolates from steeped yam (Gbodo): Predominance of Meyerozyma guilliermondii . Food Sci Biotechnol 24, 1041–1047 (2015). https://doi.org/10.1007/s10068-015-0133-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0133-9

Keywords

Navigation