Antibacterial activities of isothiocyanates extracted from horseradish (Armoracia rusticana) root against Antibiotic-resistant bacteria

Abstract

The antibacterial activities of isothiocyanates (ITCs) extracted from horseradish root was determined against 4 strains of antibiotic-resistant bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), multidrug-resistant Acinetobacter baumanii (MRAB), and multidrug-resistant Pseudomonas aeruginosa (MRPA), and 3 strains of normal pathogenic bacteria, S. aureus, A. baumanii, and P. aeruginosa. The minimum bactericidal concentrations (MBC) of ITCs against MRSA, VRSA, MRAB, and MRPA were 666.7, 666.7, 333.3, and 208.3 μg/mL, respectively, and against S. aureus, A. baumanii, and P. aeruginosa were 833.3, 41.7, and 52.1 μg/mL, respectively. ITCs extracted from horseradish root showed the strongest antibacterial activity against A. baumanii with a MBC of 41.7 μg/mL. Among antibiotic-resistant bacteria, ITCs showed the strongest antibacterial activity against MRPA with a MBC of 208.3 μg/mL. MBC values of vancomycin against MRSA, VRSA, and S. aureus were 1,667.7, 2,000.0, and 1,333.3 μg/mL, levofloxacin against MRAB and A. baumanii were 833.3 and 1,333.3 μg/mL, respectively, norfloxacin against MRPA and P. aeruginosa were 666.7 and 7.8 μg/mL, respectively. ITCs showed stronger antibacterial activities than antibiotics against tested bacteria except P. aeruginosa. These results indicate that ITCs extracted from horseradish root should be candidates for antibacterial agent against antibiotic-resistant bacteria.

References

  1. 1.

    Fenwick GR, Heaney RK, Mullin WJ, VanEtten CH. Glucosinolates and their breakdown products in food and food plants. CRC Cr. Rev. Food Sci. 18: 123–201, (1982)

    Article  Google Scholar 

  2. 2.

    Chadwick CI, Lumpkin TA, Elberson LR. The botany, uses and production of Wasabia japonica (Miq.) (Cruciferae) Matsum. Econ. Bot. 47: 113–135, (1993)

    Article  Google Scholar 

  3. 3.

    Sikkema J, de Bont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269: 8022–8028, (1994)

    CAS  Google Scholar 

  4. 4.

    Mazza G. Volatiles in distillates of fresh, dehydrated, and freeze dried horseradish. Can. I. Food Sc. Tech. J. 17: 18–23, (1984)

    Article  CAS  Google Scholar 

  5. 5.

    Lee GH, Kang HA, Kim KH, Shin MG. Microencapsulation effects of allyl isothiocyanate with modified starch using fluidized bed processing. Food Sci. Biotechnol. 18: 1071–1075, (2009)

    CAS  Google Scholar 

  6. 6.

    Li XH, Jin ZY, Wang J. Complexation of allyl isothiocyanate by α- and β-cyclodextrin and its controlled release characteristics. Food Chem. 103: 461–466, (2007)

    Article  CAS  Google Scholar 

  7. 7.

    Nadarajah D, Han JH, Holley RA. Inactivation of Escherichia coli O157:H7 in packaged ground beef by allyl isothiocyanate. Int. J. Food Microbiol. 99: 269–279, (2005)

    Article  CAS  Google Scholar 

  8. 8.

    Nielsen PV, Rios R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol. 60: 219–229, (2000)

    Article  CAS  Google Scholar 

  9. 9.

    Shin IS, Han JS, Choi KD, Chung DH, Choi GP, Ahn J. Effect of isothiocyanates from horseradish (Armoracia rusticana) on the quality and shelf life of tofu. Food Control 21: 1081–1086, (2010)

    Article  CAS  Google Scholar 

  10. 10.

    Sultana T, McNeil DL, Porter NG, Savage GP. Investigation of isothiocyanate yield from flowering and non-flowering tissues of wasabi grown in flooded system. J. Food Compos. Anal. 16: 637–646, (2003)

    Article  CAS  Google Scholar 

  11. 11.

    Chacon PA, Buffo RA, Holley RA. Inhibitory effects of microencapsulated allyl isothiocyanate (AIT) against Escherichia coli O157:H7 in refrigerated, nitrogen packed, finely chopped beef. Int. J. Food Microbiol. 107: 231–237, (2006)

    Article  CAS  Google Scholar 

  12. 12.

    Kim JH, Park JG, Lee JW, Kim WG, Chung YJ, Byun MW. The combined effects of N2-packaging, heating, and gamma irradiation on the shelf-stability of kimchi, Korean fermented vegetable. Food Control 19: 56–61, (2008)

    Article  CAS  Google Scholar 

  13. 13.

    Ko JA, Jeon JY, Park HJ. Preparation and characterization of allyl isothiocyanate microcapsules by spray drying. J. Food Biochem. 36: 255–261, (2012)

    Article  CAS  Google Scholar 

  14. 14.

    Kawakishi S, Kaneko T. Interaction of proteins with allyl isothiocyanate. J. Agr. Food Chem. 35: 85–88, (1987)

    Article  CAS  Google Scholar 

  15. 15.

    Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 20: 1073–1079, (2009)

    Article  CAS  Google Scholar 

  16. 16.

    Giamarellou H, Poulakou G. Multidrug-resistant Gram-negative infections: What are the treatment options? Drugs 69: 1879–1901, (2009)

    Article  CAS  Google Scholar 

  17. 17.

    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48: 1–12, (2009)

    Article  Google Scholar 

  18. 18.

    Kobayash Y, Ichioka M, Hirose T, Nagai K, Matsumoto A, Matsui H, Hanaki H, Masuma R, Takahashi Y, Ômura S, Sunazuka T. Bottromycin derivatives: Efficient chemical modifications of the ester moiety and evaluation of anti-MRSA and anti-VRE activities. Bioorg. Med. Chem. Lett. 20: 6116–6120, (2010)

    Article  Google Scholar 

  19. 19.

    Isnansetyo A, Kamei Y. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica OBC30T. Int. J. Antimicrob. Ag. 34: 131–135, (2009)

    Article  CAS  Google Scholar 

  20. 20.

    Giamarellou H, Antoniadou A, Kanellakopoulou K. Acinetobacter baumannii: A universal threat to public health? Int. J. Antimicrob. Ag. 32: 106–119, (2008)

    Article  CAS  Google Scholar 

  21. 21.

    Munoz-Price LS, Weinstein RA. Acinetobacter infection. New Engl. J. Med. 358: 1271–1281, (2008)

    Article  CAS  Google Scholar 

  22. 22.

    Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 21: 538–582, (2008)

    Article  CAS  Google Scholar 

  23. 23.

    Quale J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin. Infect. Dis. 37: 214–220, (2003)

    Article  CAS  Google Scholar 

  24. 24.

    Lee HY, Chen CL, Wang SB, Su LH, Chen SH, Liu SY, Wu TL, Lin TY, Chiu CH. Imipenem heteroresistance induced by imipenem in multidrug-resistant Acinetobacter baumannii: Mechanism and clinical implications. Int. J. Antimicrob. Ag. 37: 302–308, (2011)

    Article  CAS  Google Scholar 

  25. 25.

    Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug resistant Acinetobacter baumannii infections. Lancet Infect. Dis. 8: 751–762, (2008)

    Article  Google Scholar 

  26. 26.

    Vila J, Pachón J. Therapeutic options for Acinetobacter baumannii infections. Expert Opin. Pharmaco. 9: 587–599, (2008)

    Article  CAS  Google Scholar 

  27. 27.

    Cholley P, Gbaguidi-Haore H, Bertrand X, Thouverez M, Plésiat P, Hocquet D, Talon D. Molecular epidemiology of multidrug-resistant Pseudomonas aeruginosa in a French university hospital. J. Hosp. Infect. 76: 316–319, (2010)

    Article  CAS  Google Scholar 

  28. 28.

    Patzer JA, Dzierzanowska D. Increase of imipenem resistance among Pseudomonas aeruginosa isolates from a Polish paediatric hospital (1993–2002). Int. J. Antimicrob. Ag. 29: 153–158, (2007)

    Article  CAS  Google Scholar 

  29. 29.

    Strateva T, Yordanov D. Pseudomonas aeruginosa A phenomenon of bacterial resistance. J. Med. Microbiol. 58: 1133–1148, (2009)

    Article  CAS  Google Scholar 

  30. 30.

    Nemec A, Krizova L, Maixnerova M, Musilek M. Multidrugresistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic. Res. Microbiol. 161: 234–242, (2010)

    Article  CAS  Google Scholar 

  31. 31.

    CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 5th ed. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2012)

    Google Scholar 

  32. 32.

    Bamba H, Kondo Y, Wong RM, Sekine S, Matsuzaki F. Minimum inhibitory concentration of various single agents and the effect of their combinations against Helicobacter pylori, as estimated by a fast and simple in vitro assay method. Am. J. Gastroenterol. 92: 659–662, (1997)

    CAS  Google Scholar 

  33. 33.

    Akinjogunla OJ, Yah CS, Eghafona NO, Ogbemudia FO. Antibacterial activity of leave extracts of Nymphaea lotus (Nymphaeaceae) on methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Staphylococcus aureus (VRSA) isolated from clinical samples. Ann. Biol. Res. 1: 174–184, (2010)

    Google Scholar 

  34. 34.

    Yuvaraj N, Kanmani P, Satishkumar R, Paari KA, Pattukumar V, Arul V. Extraction, purification and partial characterization of Cladophora glomerata against multidrug resistant human pathogen Acinetobacter baumannii and fish pathogens. World J. Fish Mar. Sci. 3: 51–57, (2011)

    Google Scholar 

  35. 35.

    Nascimento GGF, Locatelli J, Freitas PC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on antbiotic-resistant bacteria. Braz. J. Microbiol. 31: 247–256, (2000)

    Google Scholar 

  36. 36.

    Etoh H, Nishimura A, Takasawa R, Yagi A, Saito K, Sakata K, Kishima I, Ina K. ω-Methylsulphinylalkyl isothiocyanates in wasabi, Wasabia japonica Matsum. Agr. Biol. Chem. Tokyo 54: 1587–1589, (1990)

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Il-Shik Shin.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Phan-a-god, S. & Shin, I. Antibacterial activities of isothiocyanates extracted from horseradish (Armoracia rusticana) root against Antibiotic-resistant bacteria. Food Sci Biotechnol 24, 1029–1034 (2015). https://doi.org/10.1007/s10068-015-0131-y

Download citation

Keywords

  • antibacterial activity
  • horseradish
  • isothiocyanate
  • antibiotic resistant bacteria