Advertisement

Food Science and Biotechnology

, Volume 24, Issue 3, pp 1029–1034 | Cite as

Antibacterial activities of isothiocyanates extracted from horseradish (Armoracia rusticana) root against Antibiotic-resistant bacteria

Research Article

Abstract

The antibacterial activities of isothiocyanates (ITCs) extracted from horseradish root was determined against 4 strains of antibiotic-resistant bacteria, methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant S. aureus (VRSA), multidrug-resistant Acinetobacter baumanii (MRAB), and multidrug-resistant Pseudomonas aeruginosa (MRPA), and 3 strains of normal pathogenic bacteria, S. aureus, A. baumanii, and P. aeruginosa. The minimum bactericidal concentrations (MBC) of ITCs against MRSA, VRSA, MRAB, and MRPA were 666.7, 666.7, 333.3, and 208.3 μg/mL, respectively, and against S. aureus, A. baumanii, and P. aeruginosa were 833.3, 41.7, and 52.1 μg/mL, respectively. ITCs extracted from horseradish root showed the strongest antibacterial activity against A. baumanii with a MBC of 41.7 μg/mL. Among antibiotic-resistant bacteria, ITCs showed the strongest antibacterial activity against MRPA with a MBC of 208.3 μg/mL. MBC values of vancomycin against MRSA, VRSA, and S. aureus were 1,667.7, 2,000.0, and 1,333.3 μg/mL, levofloxacin against MRAB and A. baumanii were 833.3 and 1,333.3 μg/mL, respectively, norfloxacin against MRPA and P. aeruginosa were 666.7 and 7.8 μg/mL, respectively. ITCs showed stronger antibacterial activities than antibiotics against tested bacteria except P. aeruginosa. These results indicate that ITCs extracted from horseradish root should be candidates for antibacterial agent against antibiotic-resistant bacteria.

Keywords

antibacterial activity horseradish isothiocyanate antibiotic resistant bacteria 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fenwick GR, Heaney RK, Mullin WJ, VanEtten CH. Glucosinolates and their breakdown products in food and food plants. CRC Cr. Rev. Food Sci. 18: 123–201, (1982)CrossRefGoogle Scholar
  2. 2.
    Chadwick CI, Lumpkin TA, Elberson LR. The botany, uses and production of Wasabia japonica (Miq.) (Cruciferae) Matsum. Econ. Bot. 47: 113–135, (1993)CrossRefGoogle Scholar
  3. 3.
    Sikkema J, de Bont JAM, Poolman B. Interactions of cyclic hydrocarbons with biological membranes. J. Biol. Chem. 269: 8022–8028, (1994)Google Scholar
  4. 4.
    Mazza G. Volatiles in distillates of fresh, dehydrated, and freeze dried horseradish. Can. I. Food Sc. Tech. J. 17: 18–23, (1984)CrossRefGoogle Scholar
  5. 5.
    Lee GH, Kang HA, Kim KH, Shin MG. Microencapsulation effects of allyl isothiocyanate with modified starch using fluidized bed processing. Food Sci. Biotechnol. 18: 1071–1075, (2009)Google Scholar
  6. 6.
    Li XH, Jin ZY, Wang J. Complexation of allyl isothiocyanate by α- and β-cyclodextrin and its controlled release characteristics. Food Chem. 103: 461–466, (2007)CrossRefGoogle Scholar
  7. 7.
    Nadarajah D, Han JH, Holley RA. Inactivation of Escherichia coli O157:H7 in packaged ground beef by allyl isothiocyanate. Int. J. Food Microbiol. 99: 269–279, (2005)CrossRefGoogle Scholar
  8. 8.
    Nielsen PV, Rios R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int. J. Food Microbiol. 60: 219–229, (2000)CrossRefGoogle Scholar
  9. 9.
    Shin IS, Han JS, Choi KD, Chung DH, Choi GP, Ahn J. Effect of isothiocyanates from horseradish (Armoracia rusticana) on the quality and shelf life of tofu. Food Control 21: 1081–1086, (2010)CrossRefGoogle Scholar
  10. 10.
    Sultana T, McNeil DL, Porter NG, Savage GP. Investigation of isothiocyanate yield from flowering and non-flowering tissues of wasabi grown in flooded system. J. Food Compos. Anal. 16: 637–646, (2003)CrossRefGoogle Scholar
  11. 11.
    Chacon PA, Buffo RA, Holley RA. Inhibitory effects of microencapsulated allyl isothiocyanate (AIT) against Escherichia coli O157:H7 in refrigerated, nitrogen packed, finely chopped beef. Int. J. Food Microbiol. 107: 231–237, (2006)CrossRefGoogle Scholar
  12. 12.
    Kim JH, Park JG, Lee JW, Kim WG, Chung YJ, Byun MW. The combined effects of N2-packaging, heating, and gamma irradiation on the shelf-stability of kimchi, Korean fermented vegetable. Food Control 19: 56–61, (2008)CrossRefGoogle Scholar
  13. 13.
    Ko JA, Jeon JY, Park HJ. Preparation and characterization of allyl isothiocyanate microcapsules by spray drying. J. Food Biochem. 36: 255–261, (2012)CrossRefGoogle Scholar
  14. 14.
    Kawakishi S, Kaneko T. Interaction of proteins with allyl isothiocyanate. J. Agr. Food Chem. 35: 85–88, (1987)CrossRefGoogle Scholar
  15. 15.
    Turgis M, Han J, Caillet S, Lacroix M. Antimicrobial activity of mustard essential oil against Escherichia coli O157:H7 and Salmonella typhi. Food Control 20: 1073–1079, (2009)CrossRefGoogle Scholar
  16. 16.
    Giamarellou H, Poulakou G. Multidrug-resistant Gram-negative infections: What are the treatment options? Drugs 69: 1879–1901, (2009)CrossRefGoogle Scholar
  17. 17.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 48: 1–12, (2009)CrossRefGoogle Scholar
  18. 18.
    Kobayash Y, Ichioka M, Hirose T, Nagai K, Matsumoto A, Matsui H, Hanaki H, Masuma R, Takahashi Y, Ômura S, Sunazuka T. Bottromycin derivatives: Efficient chemical modifications of the ester moiety and evaluation of anti-MRSA and anti-VRE activities. Bioorg. Med. Chem. Lett. 20: 6116–6120, (2010)CrossRefGoogle Scholar
  19. 19.
    Isnansetyo A, Kamei Y. Anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of MC21-B, an antibacterial compound produced by the marine bacterium Pseudoalteromonas phenolica OBC30T. Int. J. Antimicrob. Ag. 34: 131–135, (2009)CrossRefGoogle Scholar
  20. 20.
    Giamarellou H, Antoniadou A, Kanellakopoulou K. Acinetobacter baumannii: A universal threat to public health? Int. J. Antimicrob. Ag. 32: 106–119, (2008)CrossRefGoogle Scholar
  21. 21.
    Munoz-Price LS, Weinstein RA. Acinetobacter infection. New Engl. J. Med. 358: 1271–1281, (2008)CrossRefGoogle Scholar
  22. 22.
    Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: Emergence of a successful pathogen. Clin. Microbiol. Rev. 21: 538–582, (2008)CrossRefGoogle Scholar
  23. 23.
    Quale J, Bratu S, Landman D, Heddurshetti R. Molecular epidemiology and mechanisms of carbapenem resistance in Acinetobacter baumannii endemic in New York City. Clin. Infect. Dis. 37: 214–220, (2003)CrossRefGoogle Scholar
  24. 24.
    Lee HY, Chen CL, Wang SB, Su LH, Chen SH, Liu SY, Wu TL, Lin TY, Chiu CH. Imipenem heteroresistance induced by imipenem in multidrug-resistant Acinetobacter baumannii: Mechanism and clinical implications. Int. J. Antimicrob. Ag. 37: 302–308, (2011)CrossRefGoogle Scholar
  25. 25.
    Karageorgopoulos DE, Falagas ME. Current control and treatment of multidrug resistant Acinetobacter baumannii infections. Lancet Infect. Dis. 8: 751–762, (2008)CrossRefGoogle Scholar
  26. 26.
    Vila J, Pachón J. Therapeutic options for Acinetobacter baumannii infections. Expert Opin. Pharmaco. 9: 587–599, (2008)CrossRefGoogle Scholar
  27. 27.
    Cholley P, Gbaguidi-Haore H, Bertrand X, Thouverez M, Plésiat P, Hocquet D, Talon D. Molecular epidemiology of multidrug-resistant Pseudomonas aeruginosa in a French university hospital. J. Hosp. Infect. 76: 316–319, (2010)CrossRefGoogle Scholar
  28. 28.
    Patzer JA, Dzierzanowska D. Increase of imipenem resistance among Pseudomonas aeruginosa isolates from a Polish paediatric hospital (1993–2002). Int. J. Antimicrob. Ag. 29: 153–158, (2007)CrossRefGoogle Scholar
  29. 29.
    Strateva T, Yordanov D. Pseudomonas aeruginosa A phenomenon of bacterial resistance. J. Med. Microbiol. 58: 1133–1148, (2009)CrossRefGoogle Scholar
  30. 30.
    Nemec A, Krizova L, Maixnerova M, Musilek M. Multidrugresistant epidemic clones among bloodstream isolates of Pseudomonas aeruginosa in the Czech Republic. Res. Microbiol. 161: 234–242, (2010)CrossRefGoogle Scholar
  31. 31.
    CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard. 5th ed. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA, USA (2012)Google Scholar
  32. 32.
    Bamba H, Kondo Y, Wong RM, Sekine S, Matsuzaki F. Minimum inhibitory concentration of various single agents and the effect of their combinations against Helicobacter pylori, as estimated by a fast and simple in vitro assay method. Am. J. Gastroenterol. 92: 659–662, (1997)Google Scholar
  33. 33.
    Akinjogunla OJ, Yah CS, Eghafona NO, Ogbemudia FO. Antibacterial activity of leave extracts of Nymphaea lotus (Nymphaeaceae) on methicillin resistant Staphylococcus aureus (MRSA) and vancomycin resistant Staphylococcus aureus (VRSA) isolated from clinical samples. Ann. Biol. Res. 1: 174–184, (2010)Google Scholar
  34. 34.
    Yuvaraj N, Kanmani P, Satishkumar R, Paari KA, Pattukumar V, Arul V. Extraction, purification and partial characterization of Cladophora glomerata against multidrug resistant human pathogen Acinetobacter baumannii and fish pathogens. World J. Fish Mar. Sci. 3: 51–57, (2011)Google Scholar
  35. 35.
    Nascimento GGF, Locatelli J, Freitas PC, Silva GL. Antibacterial activity of plant extracts and phytochemicals on antbiotic-resistant bacteria. Braz. J. Microbiol. 31: 247–256, (2000)Google Scholar
  36. 36.
    Etoh H, Nishimura A, Takasawa R, Yagi A, Saito K, Sakata K, Kishima I, Ina K. ω-Methylsulphinylalkyl isothiocyanates in wasabi, Wasabia japonica Matsum. Agr. Biol. Chem. Tokyo 54: 1587–1589, (1990)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Hee-Yun Kim
    • 1
  • Sarinnart Phan-a-god
    • 2
  • Il-Shik Shin
    • 2
  1. 1.Department of Foodservice ManagementWoosong UniversityDaejeonKorea
  2. 2.Department of Applied Marine Biotechnology and EngineeringGangneung-Wonju National UniversityGangneung, GangwonKorea

Personalised recommendations