Skip to main content
Log in

Effects of ozone on the cytomembrane and ultrastructure of Pseudomonas aeruginosa

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The ozone impact on Pseudomonas aeruginosa ATCC27853 cells was studied. Ozone-induced loss of K+, Mg2+, and ATP was measured using inductively coupled plasma/mass spectrometry and a bioluminescence assay. Maximum releases of K+ and Mg2+ were achieved at 0.37 mg/L of ozone after 2 min with a killing rate of culturable bacteria greater than 93%. Maximum release of ATP was attained at 0.42 mg/L of ozone after 3 min. Transmission electron microscopy showed that shapes of treated cells were integrated, but cytoplasmic agglutinations and vacuoles appeared. Ozone treatment caused lysis of P. aeruginosa cells to be sensitive to sodium dodecyl sulfate, insensitive to NaOH, and subject to inactivation by proteinase K. A combined action of cytoplasm agglutination, protein denaturation, and membrane permeabilization, rather than cell lysis, leads to non-culturability of P. aeruginosa cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Silva ME, Filho IC, Endo EH, Nakamura CV, Ueda-Nakamura T, Filho BP. Characterisation of potential virulence markers in Pseudomonas aeruginosa isolated from drinking water. Anton. Leeuw. 93: 323–334 (2008)

    Article  Google Scholar 

  2. Rusin PA, Rose JB, Haas CN, Gerba CP. Risk assessment of opportunistic bacterial pathogens in drinking water. Rev. Environ. Contam. T. 152: 57–83 (1997)

    CAS  Google Scholar 

  3. Zhang YQ, Wu QP, Peng FT, Zhang JM, Guo WP, Yang XH. Contamination of Pseudomonas aeruginosa and bromate in mineral water. J. Food Sci. Biotechnol. 31: 1046–1047 (2012)

    Google Scholar 

  4. Komanapalli IR, Lau BHS. Ozone-induced damage of Escherichia coli K-12. Appl. Microbiol. Biot. 46: 610–614 (1996)

    Article  CAS  Google Scholar 

  5. Cho M, Kim J, Kim JY, Yoon J, Kim JH. Mechanisms of Escherichia coli inactivation by several disinfectants. Water Res. 44: 3410–3418 (2010)

    Article  CAS  Google Scholar 

  6. Cortezzo DE, Koziol-Dube K, Setlow B, Setlow P. Treatment with oxidizing agents damages the inner membrane of spores of Bacillus subtilis and sensitizes spores to subsequent stress. J. Appl. Microbiol. 97: 838–852 (2004)

    Article  CAS  Google Scholar 

  7. Young SB, Setlow P. Mechanisms of Bacillus subtilis spore resistance to and killing by aqueous ozone. J. Appl. Microbiol. 96: 1133–1142 (2004)

    Article  CAS  Google Scholar 

  8. Yeaman MR, Bayer AS, Koo SP, Foss W, Sullam PM. Platelet microbicidal proteins and neutrophil defensin disrupt the Staphylococcus aureus cytoplasmic membrane by distinct mechanisms of action. J. Clin. Invest. 101: 178–187 (1998)

    Article  CAS  Google Scholar 

  9. Johnston MD, Hanlon GW, Denyer SP, Lambert RJM. Membrane damage to bacteria caused by single and combined biocides. J. Appl. Microbiol. 94: 1015–1023 (2003)

    Article  CAS  Google Scholar 

  10. Zuma FN, Lin J, Jonnalagadda SB. Kinetics of inactivation of Pseudomonas aeruginosa in aqueous solutions by ozone aeration. J. Environ. Sci. Heal. A. 44: 929–935 (2009)

    Article  CAS  Google Scholar 

  11. Zhang YQ, Wu QP, Zhang JM, Yang XH. Effects of ozone on membrane permeability and ultrastructure in Pseudomonas aeruginosa. J. Appl. Microbiol. 111: 1006–1015 (2011)

    Article  CAS  Google Scholar 

  12. Chen AM, Shi QS, Feng J, Ou-Yang YS, Chen YB, Tan SZ. Dissociation of outer membrane for Escherichia coli cell caused by cerium nitrate. J. Rare Earth. 28: 312–315 (2010)

    Article  CAS  Google Scholar 

  13. Ayres H, Furr JR, Russell AD. A rapid method of evaluating permeabilizing activity against Pseudomonas aeruginosa. Lett. Appl. Microbiol. 17: 149–151 (1993)

    Article  CAS  Google Scholar 

  14. Munton TJ, Russell AD. Effects of glutaraldehyde on the outer layer of Escherichia coli. J. Appl. Bacteriol. 35: 193–199 (1972)

    Article  CAS  Google Scholar 

  15. Russell AD, Vernon GN. Inhibition by glutaraldehyde of lysostaphin-induced lysis of Staphylococcus aureus. Microbios 13: 147–149 (1975)

    CAS  Google Scholar 

  16. Walsh SE, Maillard JY, Simons C, Russell AD. Studies on the mechanisims of the antibacterial action of ortho-phthalaldehyde. J. Appl. Microbiol. 87: 702–710 (1999)

    Article  CAS  Google Scholar 

  17. Wei MK. Studies on the mechanisms of cellular damages on microbes by chlorine dioxide. PhD thesis, South PR China Sea Institute of Oceanology, Chinese Academy of Sciences, Guang Zhou, Guangdong, China (2008)

    Google Scholar 

  18. Mehlman MA, Borek C. Toxicity and biochemical mechanisms of ozone. Environ. Res. 42: 36–53 (1987)

    Article  CAS  Google Scholar 

  19. Hinze H, Prakash D, Holzer H. Effect of ozone on ATP, cytosolic enzymes and permeability of Saccharomyces cerevisiae. Arch. Microbiol. 147: 105–108 (1987)

    Article  CAS  Google Scholar 

  20. Takamoto Y, Maeba H, Kamimura M. Changes in survival rate enzyme activities and in Escherichia coli with ozone. Appl. Microbiol. Biot. 37: 393–395 (1992)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-ping Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Yq., Wu, Qp., Zhang, Jm. et al. Effects of ozone on the cytomembrane and ultrastructure of Pseudomonas aeruginosa . Food Sci Biotechnol 24, 987–993 (2015). https://doi.org/10.1007/s10068-015-0126-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0126-8

Keywords

Navigation