Skip to main content
Log in

Health benefits of lactic acid bacteria isolated from kimchi, with respect to immunomodulatory effects

  • Research Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Kimchi is a traditional Korean fermented vegetable product, which is fermented by various lactic acid bacteria (LAB), including the genera Lactobacillus, Leuconostoc, Pediococcus, and Weissella. While the immunomodulatory effects of LAB isolated from dairy products are relatively well established, little is known about whether kimchi LAB are capable of modulating a variety of host immune responses. Recent studies have shown that several kimchi LAB that show probiotic properties regulate the balance of T-helper cell response by inducing macrophage activation and enhance the differentiation and activation of regulatory T cells, resulting in the alleviation of allergies and atopic dermatitis in animal models. In this review, current knowledge will be discussed about the beneficial effects of kimchi LAB, including the effects of different strains on immunological functions, and the potential use of kimchi LAB strains as immunomodulators in various immunological settings for therapeutic purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lee SH, Park MS, Jung JY, Jeon CO. Leuconostoc miyukkimchii sp. nov., isolated from brown algae (Undaria pinnatifida) kimchi. Int. J. Syst. Evol. Micr. 62: 1098–1103, (2012)

    Article  CAS  Google Scholar 

  2. Kim J, Kim JY, Kim MS, Roh SW, Bae JW. Lactobacillus kimchiensis sp. nov., isolated from a fermented food. Int. J. Syst. Evol. Micr. 63: 1355–1359, (2013)

    Article  CAS  Google Scholar 

  3. Cheigh HS, Park KY. Biochemical, microbiological, and nutritional aspects of kimchi (Korean fermented vegetable products). Cr. Rev. Food Sci. 34: 175–203, (1994)

    Article  CAS  Google Scholar 

  4. Mohamadzadeh M, Duong T, Hoover T, Klaenhammer TR. Targeting mucosal dendritic cells with microbial antigens from probiotic lactic acid bacteria. Expert Rev. Vaccines 7: 163–174, (2008)

    Article  CAS  Google Scholar 

  5. Tsai YT, Cheng PC, Pan TM. The immunomodulatory effects of lactic acid bacteria for improving immune functions and benefits. Appl. Microbiol. Biot. 96: 853–862, (2012)

    Article  CAS  Google Scholar 

  6. Wicken AJ, Knox KW. Immunogenicity of cell wall and plasma membrane components of some oral lactic acid bacteria. J. Dent. Res. 55: C34–C41 (1976)

    Article  Google Scholar 

  7. Hatcher GE, Lambrecht RS. Augmentation of macrophage phagocytic activity by cell-free extracts of selected lactic acid-producing bacteria. J. Dairy Sci. 76: 2485–2492, (1993)

    Article  CAS  Google Scholar 

  8. Christensen HR, Frokiaer H, Pestka JJ. Lactobacilli differentially modulate expression of cytokines and maturation surface markers in murine dendritic cells. J. Immunol. 168: 171–178, (2002)

    Article  CAS  Google Scholar 

  9. Perdigon G, Maldonado Galdeano C, Valdez JC, Medici M. Interaction of lactic acid bacteria with the gut immune system. Eur. J. Clin. Nutr. 56: S21–S26 (2002)

    Article  CAS  Google Scholar 

  10. Mohamadzadeh M, Olson S, Kalina WV, Ruthel G, Demmin KL, Bavari S, Klaenhammer TR. Lactobacilli activate human dendritic cells that skew T cells toward T helper 1 polarization. P. Natl. Acad. Sci. USA 102: 2880–2885, (2005)

    Article  CAS  Google Scholar 

  11. Won TJ, Kim B, Song DS, Lim YT, Oh ES, Lee do I, Park ES, Min H, Park SY, Hwang KW. Modulation of Th1/Th2 balance by Lactobacillus strains isolated from kimchi via stimulation of macrophage cell line J774A.1 in vitro. J. Food Sci. 76: H55–H61 (2011)

    Article  CAS  Google Scholar 

  12. Koizumi S, Wakita D, Sato T, Mitamura R, Izumo T, Shibata H, Kiso Y, Chamoto K, Togashi Y, Kitamura H, Nishimura T. Essential role of Toll-like receptors for dendritic cell and NK1.1+ celldependent activation of type 1 immunity by Lactobacillus pentosus strain S-PT84. Immunol. Lett. 120: 14–19, (2008)

    Article  CAS  Google Scholar 

  13. Jounai K, Ikado K, Sugimura T, Ano Y, Braun J, Fujiwara D. Spherical lactic acid bacteria activate plasmacytoid dendritic cells immunomodulatory function via TLR9-dependent crosstalk with myeloid dendritic cells. PLoS ONE 7: e32588 (2012)

    Article  CAS  Google Scholar 

  14. Vivier E, Tomasello E, Baratin M, Walzer T, Ugolini S. Functions of natural killer cells. Nat. Immunol. 9: 503–510, (2008)

    Article  CAS  Google Scholar 

  15. Tsai YT, Cheng PC, Fan CK, Pan TM. Time-dependent persistence of enhanced immune response by a potential probiotic strain Lactobacillus paracasei subsp. paracasei NTU 101. Int. J. Food Microbiol. 128: 219–225, (2008)

    Article  CAS  Google Scholar 

  16. Kosaka A, Yan H, Ohashi S, Gotoh Y, Sato A, Tsutsui H, Kaisho T, Toda T, Tsuji NM. Lactococcus lactis subsp. cremoris FC triggers IFN-γ production from NK and T cells via IL-12 and IL-18. Int. Immunopharmacol. 14: 729–733, (2012)

    Article  CAS  Google Scholar 

  17. Hori T, Kiyoshima J, Yasui H. Effect of an oral administration of Lactobacillus casei strain Shirota on the natural killer activity of blood mononuclear cells in aged mice. Biosci. Biotech. Bioch. 67: 420–422, (2003)

    Article  CAS  Google Scholar 

  18. Takeda K, Suzuki T, Shimada SI, Shida K, Nanno M, Okumura K. Interleukin12 is involved in the enhancement of human natural killer cell activity by Lactobacillus casei Shirota. Clin. Exp. Immunol. 146: 109–115, (2006)

    Article  CAS  Google Scholar 

  19. Takeda K, Okumura K. Effects of a fermented milk drink containing Lactobacillus casei strain Shirota on the human NK-cell activity. J. Nutr. 137: 791S–793S (2007)

    CAS  Google Scholar 

  20. Lee JW, Shin JG, Kim EH, Kang HE, Yim IB, Kim JY, Joo HG, Woo HJ. Immunomodulatory and antitumor effects in vivo by the cytoplasmic fraction of Lactobacillus casei and Bifidobacterium longum. J. Vet. Sci. 5: 41–48, (2004)

    Google Scholar 

  21. Cheon S, Lee KW, Kim KE, Park JK, Park S, Kim CH, Kim D, Lee HJ, Cho D. Heat-killed Lactobacillus acidophilus La205 enhances NK cell cytotoxicity through increased granule exocytosis. Immunol. Lett. 136: 171–176, (2011)

    Article  CAS  Google Scholar 

  22. Takeda S, Takeshita M, Kikuchi Y, Dashnyam B, Kawahara S, Yoshida H, Watanabe W, Muguruma M, Kurokawa M. Efficacy of oral administration of heat-killed probiotics from Mongolian dairy products against influenza infection in mice: Alleviation of influenza infection by its immunomodulatory activity through intestinal immunity. Int. Immunopharmacol. 11: 1976–1983, (2011)

    Article  CAS  Google Scholar 

  23. Kidd P. Th1/Th2 balance: The hypothesis, its limitations, and implications for health and disease. Altern. Med. Rev. 8: 223–246, (2003)

    Google Scholar 

  24. de Roock S, van Elk M, Hoekstra MO, Prakken BJ, Rijkers GT, de Kleer IM. Gut derived lactic acid bacteria induce strain specific CD4+ T cell responses in human PBMC. Clin. Nutr. 30: 845–851, (2011)

    Article  Google Scholar 

  25. Ogita T, Nakashima M, Morita H, Saito Y, Suzuki T, Tanabe S. Streptococcus thermophilus ST28 ameliorates colitis in mice partially by suppression of inflammatory Th17 cells. J. Biomed. Biotehnol. 2011: 378417, (2011)

    Google Scholar 

  26. Lee J, Yun HS, Cho KW, Oh S, Kim SH, Chun T, Kim B, Whang KY. Evaluation of probiotic characteristics of newly isolated Lactobacillus spp.: Immune modulation and longevity. Int. J. Food Microbiol. 148: 80–86, (2011)

    Article  CAS  Google Scholar 

  27. Noguchi S, Hattori M, Sugiyama H, Hanaoka A, Okada S, Yoshida T. Lactobacillus plantarum NRIC1832 enhances IL-10 production from CD4(+) T cells in vitro. Biosci. Biotech. Bioch. 76: 1925–1931, (2012)

    Article  CAS  Google Scholar 

  28. Lin WH, Wu CR, Lee HZ, Kuo YH, Wen HS, Lin TY, Lee CY, Huang SY, Lin CY. Induced apoptosis of Th2 lymphocytes and inhibition of airway hyperresponsiveness and inflammation by combined lactic acid bacteria treatment. Int. Immunopharmacol. 15: 703–711, (2013)

    Article  CAS  Google Scholar 

  29. Enomoto M, Noguchi S, Hattori M, Sugiyama H, Suzuki Y, Hanaoka A, Okada S, Yoshida T. Oral administration of Lactobacillus plantarum NRIC0380 suppresses IgE production and induces CD4+CD25+Foxp3+ cells in vivo. Biosci. Biotech. Bioch. 73: 457–460, (2009)

    Article  CAS  Google Scholar 

  30. Rizzello V, Bonaccorsi I, Dongarrà ML, Fink LN, Ferlazzo G. Role of natural killer and dendritic cell crosstalk in immunomodulation by commensal bacteria probiotics. J. Biomed. Biotehnol. 2011: 473097, (2011)

    Google Scholar 

  31. Brawand P, Fitzpatrick DR, Greenfield BW, Brasel K, Maliszewski CR, De Smedt T. Murine plasmacytoid pre-dendritic cells generated from Flt3 ligand-supplemented bone marrow cultures are immature APCs. J. Immunol. 169: 6711–6719, (2002)

    Article  CAS  Google Scholar 

  32. Konieczna P, Groeger D, Ziegler M, Frei R, Ferstl R, Shanahan F, Quigley EM, Kiely B, Akdis CA, O’Mahony L. Bifidobacterium infantis 35624 administration induces Foxp3 T regulatory cells in human peripheral blood: Potential role for myeloid and plasmacytoid dendritic cells. Gut 61: 354–366, (2012)

    Article  CAS  Google Scholar 

  33. Park KU, Kim JY, Cho YS, Yee ST, Jeong CH, Kang KS, Seo KI. Anticancer and immuno-activity of onion kimchi methanol extract. J. Korean Soc. Food Sci. Nutr. 33: 1439–1444, (2004)

    Article  Google Scholar 

  34. Kim J, Lee Y. The effects of kimchi intake on lipid contents of body and mitogen response of spleen lymphocytes in rats. J. Korean Soc. Food Sci. Nutr. 26: 1200–1207, (1997)

    CAS  Google Scholar 

  35. Kim MJ, Kwon MJ, Song YO, Lee EK, Youn HJ, Song YS. The effects of kimchi on hematological and immunological parameters in vivo and in vitro. J. Korean Soc. Food Sci. Nutr. 26: 1208–1214, (1997)

    CAS  Google Scholar 

  36. Choi M, Park K, Kim K. Effects of kimchi extracts on the growth of sarcoma-180 cells and phagocytic activity of mice. J. Korean Soc. Food Sci. Nutr. 26: 254–260, (1997)

    Google Scholar 

  37. Chae O, Shin K, Chung H, Choe T. Immunostimulation effects of mice fed with cell lysate of Lactobacillus plantarum isolated from kimchi. KSBB J. 13: 424–430, (1998)

    Google Scholar 

  38. Kim S, Shin K, Lee H. Immunopotentiating activities of cellular components of Lactobacillus brevis FSB-1. J. Korean Soc. Food Sci. Nutr. 33: 1552–1559, (2004)

    Article  Google Scholar 

  39. Seo J, Lee H. Characteristics and immunomodulating activity of lactic acid bacteria for the potential probiotics. Korean J. Food Sci. Technol. 39: 681–687, (2007)

    Google Scholar 

  40. Lee H, Ahn YT, Park SH, Park DY, Jin YW, Kim CS, Sung SH, Huh CS, Kim DH. Lactobacillus plantarum HY7712 protects against the impairment of NK-cell activity caused by whole-body gamma-irradiation in mice. J. Microbiol. Biotechn. 24: 127–131, (2014)

    Article  Google Scholar 

  41. Park SY, Jin HM, Lim HJ, Lee J, Jang JY, Lee JH, Park HW, Park SH, Kang M, Kim HJ, Kim TW, Seo MJ, Choi HJ. Immunomodulatory effects of lactic acid bacteria isolated from kimchi on the function of mouse T cells. Curr. Top. LAB Probiotics 1: 133–137, (2013)

    Google Scholar 

  42. Lim J, Seo BJ, Kim JE, Chae CS, Im SH, Hahn YS, Park YH. Characteristics of immunomodulation by a Lactobacillus sakei proBio65 isolated from kimchi. Korean J. Microbiol. Biotechnol. 39: 313–316, (2011)

    CAS  Google Scholar 

  43. Kwon HK, Lee CG, So JS, Chae CS, Hwang JS, Sahoo A, Nam JH, Rhee JH, Hwang KC, Im SH. Generation of regulatory dendritic cells and CD4+Foxp3+ T cells by probiotics administration suppresses immune disorders. P. Natl. Acad. Sci. USA 107: 2159–2164, (2010)

    Article  CAS  Google Scholar 

  44. Lee IH, Lee SH, Lee IS, Park YK, Chung DK, Choue R. Effects of probiotic extracts of kimchi on immune function in NC/Nga mice. Korean J. Food Sci. Technol. 40: 82–87, (2008)

    Google Scholar 

  45. Park CW, Youn M, Jung YM, Kim H, Jeong Y, Lee HK, Kim HO, Lee I, Lee SW, Kang KH, Park YH. New functional probiotic Lactobacillus sakei probio 65 alleviates atopic symptoms in the mouse. J. Med. Food 11: 405–412, (2008)

    Article  CAS  Google Scholar 

  46. Kim JY, Park BK, Park HJ, Park YH, Kim BO, Pyo S. Atopic dermatitis-mitigating effects of new Lactobacillus strain, Lactobacillus sakei probio 65 isolated from kimchi. J. Appl. Microbiol. 115: 517–526, (2013)

    Article  CAS  Google Scholar 

  47. Lee NK, Kim SY, Han KJ, Paik HD. Probiotic potential of Lactobacillus strains with anti-allergic effects from kimchi for yogurt starters. LWT-Food Sci. Technol. 58: 130–134, (2014)

    Article  CAS  Google Scholar 

  48. Mountzouris KC, Tsirtsikos P, Kalamara E, Nitsch S, Schatzmayr G, Fegeros K. Evaluation of the efficacy of a probiotic containing Lactobacillus, Bifidobacterium, Enterococcus, and Pediococcus strains in promoting broiler performance and modulating cecal microflora composition and metabolic activities. Poultry Sci. 86: 309–317, (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Dong Paik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, HJ., Lee, NK. & Paik, HD. Health benefits of lactic acid bacteria isolated from kimchi, with respect to immunomodulatory effects. Food Sci Biotechnol 24, 783–789 (2015). https://doi.org/10.1007/s10068-015-0102-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0102-3

Keywords

Navigation