Food Science and Biotechnology

, Volume 24, Issue 2, pp 771–776 | Cite as

Effects of elevated intracellular cyclic di-GMP levels on biofilm formation and transcription profiles of Vibrio vulnificus

Research Article


Effects of elevated intracellular 3′,5′-cyclic diguanylic acid (c-di-GMP) levels on biofilm formation and transcription profiles were evaluated to assess the functions of c-di-GMP in Vibrio vulnificus. Elevated c-di-GMP levels promoted biofilm formation and rugose colony development. Microarray analysis revealed that c-di-GMP influenced expression of genes belonging to different functional categories and more than 5% of the V. vulnificus genome. Among these, 10 genes potentially involved in biofilm formation were experimentally verified as subject to c-di-GMP regulation. c-di-GMP contributes to biofilm formation based on modulation of diverse cellular processes in V. vulnificus.


3′,5′-cyclic diguanylic acid (c-di-GMP) Vibrio vulnificus transcriptome analysis biofilm rugose colony 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Flemming HC, Wingender J. The biofilm matrix. Nat. Rev. Microbiol. 8: 623–633 (2012)Google Scholar
  2. 2.
    Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41: 435–464 (1987)CrossRefGoogle Scholar
  3. 3.
    Johnson LR. Microcolony and biolm formation as a survival strategy for bacteria. J. Theor. Biol. 251: 24–34 (2008)CrossRefGoogle Scholar
  4. 4.
    Marco-Noales E, Milán M, Fouz B, Sanjuán E, Amaro C. Transmission to eels, portals of entry, and putative reservoirs of Vibrio vulnificus serovar E (biotype 2). Appl. Environ. Microb. 67: 4717–4725 (2001)CrossRefGoogle Scholar
  5. 5.
    Guo Y, Rowe-Magnus DA. Identification of a c-di-GMP-regulated polysaccharide locus governing stress resistance and biofilm and rugose colony formation in Vibrio vulnificus. Infect. Immun. 78: 1390–1402 (2010)CrossRefGoogle Scholar
  6. 6.
    Guo Y, Rowe-Magnus DA. Overlapping and unique contributions of two conserved polysaccharide loci in governing distinct survival phenotypes in Vibrio vulnificus. Environ. Microbiol. 13: 2888–2990 (2011)CrossRefGoogle Scholar
  7. 7.
    Grau BL, Henk MC, Pettis GS. High-frequency phase variation of Vibrio vulnificus 1003: Isolation and characterization of a rugose phenotypic variant. J. Bacteriol. 187: 2519–2525 (2005)CrossRefGoogle Scholar
  8. 8.
    Paranjpye RN, Johnson AB, Baxter AE, Strom MS. Role of type IV pilins in persistence of Vibrio vulnificus in Crassostrea virginica oysters. Appl. Environ. Microb. 73: 5041–5044 (2007)CrossRefGoogle Scholar
  9. 9.
    Kim SM, Park JH, Lee HS, Kim WB, Ryu JM, Han HJ, Choi SH. LuxR homologue SmcR is essential for Vibrio vulnificus pathogenesis and biofilm detachment, and its expression is induced by host cells. Infect. Immun. 81: 3721–3730 (2013)CrossRefGoogle Scholar
  10. 10.
    Boyd CD, O’Toole GA. Second messenger regulation of biofilm formation: Breakthroughs in understanding c-di-GMP effector systems. Annu. Rev. Cell Dev. Bi. 28: 439–462 (2012)CrossRefGoogle Scholar
  11. 11.
    Hengge R. Principles of c-di-GMP signaling in bacteria. Nat. Rev. Microbiol. 7: 263–273 (2009)CrossRefGoogle Scholar
  12. 12.
    Nakhamchik A, Wilde C, Rowe-Magnus DA. Cyclic-di-GMP regulates extracellular polysaccharide production, biofilm formation, and rugose colony development by Vibrio vulnificus. Appl. Environ. Microb. 74: 4199–4209 (2008)CrossRefGoogle Scholar
  13. 13.
    Goo SY, Lee HJ, Kim WH, Han KL, Park DK, Lee HJ, Kim SM, Kim KS, Lee KH, Park SJ. Identication of OmpU of Vibrio vulnicus as a bronectin-binding protein and its role in bacterial pathogenesis. Infect. Immun. 74: 5586–5594 (2006)CrossRefGoogle Scholar
  14. 14.
    Irie Y, Borlee BR, O’Connor JR, Hill PJ, Harwood CS, Wozniak DJ, Parsek MR. Self-produced exopolysaccharide is a signal that stimulates biolm formation in Pseudomonas aeruginosa. P. Natl. Acad. Sci. USA 109: 20632–20636 (2012)CrossRefGoogle Scholar
  15. 15.
    Russo DM, Williams A, Edwards A, Posadas DM, Finnie C, Dankert M, Downie JA, Zorreguieta A. Proteins exported via the PrsD-PrsE type I secretion system and the acidic exopolysaccharide are involved in biofilm formation by Rhizobium leguminosarum. J. Bacteriol. 188: 4474–4486 (2006)CrossRefGoogle Scholar
  16. 16.
    Kim HS, Park SJ, Lee KH. Role of NtrC-regulated exopolysaccharides in the biolm formation and pathogenic interaction of Vibrio vulnificus. Mol. Microbiol. 74: 436–453 (2009)CrossRefGoogle Scholar
  17. 17.
    Greenberg EP, Hastings JW, Ulitzur S. Induction of luciferase synthesis in Beneckea harveyi by other marine bacteria. Arch. Microbiol. 120: 87–91 (1979)CrossRefGoogle Scholar
  18. 18.
    Edgar R, Domrachev M, Lash AE. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res. 30: 207–210 (2002)CrossRefGoogle Scholar
  19. 19.
    Barrios AF, Zuo R, Ren D, Wood TK. Hha, YbaJ, and OmpA regulate Escherichia coli K12 biolm formation and conjugation plasmids abolish motility. Biotechnol. Bioeng. 93: 188–200 (2006)CrossRefGoogle Scholar
  20. 20.
    Smith SG, Mahon V, Lambert MA, Fagan RP. A molecular Swiss army knife: OmpA structure, function, and expression. FEMS Microbiol. Lett. 273: 1–11 (2007)CrossRefGoogle Scholar
  21. 21.
    Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL. Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol. Microbiol. 55: 1160–1182 (2005)CrossRefGoogle Scholar
  22. 22.
    Liang Y, Gao H, Chen J, Dong Y, Wu L, He Z, Liu X, Qiu G, Zhou J. Pellicle formation in Shewanella oneidensis. BMC Microbiol. 10: 291 (2010)CrossRefGoogle Scholar
  23. 23.
    Ferreira RB, Chodur DM, Antunes LC, Trimble MJ, McCarter LL. Output targets and transcriptional regulation by a cyclic dimeric GMP-responsive circuit in the Vibrio parahaemolyticus Scr network. J. Bacteriol. 194: 914–924 (2012)CrossRefGoogle Scholar
  24. 24.
    Satchell KJ. Structure and function of MARTX toxins and other large repetitive RTX proteins. Annu. Rev. Microbiol. 65: 71–90 (2011)CrossRefGoogle Scholar
  25. 25.
    Casper-Lindley C, Yildiz FH. VpsT is a transcriptional regulator required for expression of vps biosynthesis genes and the development of rugose colonial morphology in Vibrio cholerae O1 El Tor. J. Bacteriol. 186: 1574–1578 (2004)CrossRefGoogle Scholar
  26. 26.
    Simon R, Priefer U, Pühler A. A broad host range mobilization system for in vivo genetic engineering transposon mutagenesis in gram negative bacteria. Nat. Biotechnol. 1: 784–791 (1983)CrossRefGoogle Scholar

Copyright information

© The Korean Society of Food Science and Technology and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Center for Food Safety and Toxicology, and Center for Food and BioconvergenceSeoul National UniversitySeoulKorea

Personalised recommendations