Skip to main content
Log in

Antioxidative and neuroprotective effects of volatile components in essential oils from Chrysanthemum indicum Linné flowers

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Chrysanthemum indicum Linné, belonging to the family Compositae, is a perennial herb that is widespread in Korea. C. indicum Linné flowers have been traditionally used as an oriental medicine for treatment of infectious diseases. The chemical compositions, antioxidant capacity, and neuroprotective effects of volatile components in essential oils from C. indicum Linné flowers were investigated. GC-MS analysis of essential oils revealed the 15 major components of 1,8-cineole, o-cymene, camphor, pinocarvone, chrysanthenyl acetate, bornyl acetate, trans-caryophyllene, terpinen-4-ol, umbellulone, trans-pinocarveol, cis-verbenol, borneol, α-terpineol, caryophyllene oxide, and thymol. Thymol had the highest antioxidant capacity. Essential oils and thymol dose-dependently decreased intracellular oxidative stress, exhibited anticholinesterase activities, and increased the cell viability of neuronal PC-12 cells. Essential oils and thymol from C. indicum Linné flowers can be sources of natural antioxidants and functional foods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. J. Agr. Food Chem. 56: 4855–4873 (2008)

    Article  CAS  Google Scholar 

  2. Weissman L, de Souza-Pinto NC, Stevnsner T, Bohr VA. DNA repair, mitochondria, and neurodegeneration. Neuroscience 145: 1318–1329 (2007)

    Article  CAS  Google Scholar 

  3. Han S, Lemire J, Appanna VP, Auger C, Castonguay Z, Appanna VD. How aluminum, an intracellular ROS generator promotes hepatic and neurological diseases: The metabolic tale. Cell Biol. Toxicol. 29: 75–84 (2013)

    Article  CAS  Google Scholar 

  4. Mehta A, Prabhakar M, Kumar P, Deshmukh R, Sharma PL. Excitotoxicity: Bridge to various triggers in neurodegenerative disorders. Eur. J. Pharmacol. 698: 6–18 (2013)

    Article  CAS  Google Scholar 

  5. Choi SS, Lee S-R, Kim SU, Lee HJ. Alzheimer's disease and stem cell therapy. Exp. Neurobiol. 23: 45–52 (2014)

    Article  Google Scholar 

  6. Ferri CP, Prince M, Brayne C, Brodaty H, Fratiglioni L, Ganguli M, Hall K, Hasegawa K, Hendrie H, Huang Y, Jorm A, Mathers C, Menezes PR, Rimmer E, Scazufca M. Global prevalence of dementia: A Delphi consensus study. Lancet 366: 2112–2117 (2005)

    Article  Google Scholar 

  7. Morales I, Guzmán-Martínez L, Cerda-Troncoso C, Farías GA, Maccioni RB. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front. Cell. Neurosci. 8: 112 (2014)

    Google Scholar 

  8. Blennow K, Dubois B, Fagan AM, Lewczuk P, de Leon MJ, Hampel H. Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer’s disease. Alzheimers Dement. 11: 58–69 (2015)

    Article  Google Scholar 

  9. Overk CR, Masliah E. Pathogenesis of synaptic degeneration in Alzheimer’s disease and Lewy body disease. Biochem. Pharmacol. 88: 508–516 (2014)

    Article  CAS  Google Scholar 

  10. Chistiakov DA, Sobenin IA, Revin VV, Orekhov AN, Bobryshev YV. Mitochondrial aging and age-related dysfunction of mitochondria. Biomed Res. Int. 2014: 238463 (2014)

    Google Scholar 

  11. Dai D-F, Chiao YA, Marcinek DJ, Szeto HH, Rabinovitch PS. Mitochondrial oxidative stress in aging and healthspan. Longev. Healthspan 3: 6 (2014)

    Article  Google Scholar 

  12. Morris JK, Honea RA, Vidoni ED, Swerdlow RH, Burns JM. Is Alzheimer’s disease a systemic disease? Biochim. Biophys. Acta 1842: 1340–1349 (2014)

    Article  CAS  Google Scholar 

  13. Vauzour D. Effect of flavonoids on learning, memory and neurocognitive performance: Relevance and potential implications for Alzheimer’s disease pathophysiology. J. Sci. Food Agr. 94: 1042–1056 (2014)

    Article  CAS  Google Scholar 

  14. Lim YJ, Oh C-S, Park Y-D, Kim D-O, Kim U-J, Cho Y-S, Eom SH. Physiological components of kiwifruits with in vitro antioxidant and acetylcholinesterase inhibitory activities. Food Sci. Biotechnol. 23: 943–949 (2014)

    Article  CAS  Google Scholar 

  15. Ruberto G, Baratta MT. Antioxidant activity of selected essential oil components in two lipid model systems. Food Chem. 69: 167–174 (2000)

    Article  CAS  Google Scholar 

  16. Im S-E, Yoon H, Nam T-G, Heo HJ, Lee CY, Kim D-O. Antineurodegenerative effect of phenolic extracts and caffeic acid derivatives in romaine lettuce on neuron-like PC-12 cells. J. Med. Food 13: 779–784 (2010)

    Article  CAS  Google Scholar 

  17. Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils-A review. Food Chem. Toxicol. 46: 446–475 (2008)

    Article  CAS  Google Scholar 

  18. Burt S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol. 94: 223–253 (2004)

    Article  CAS  Google Scholar 

  19. Choi H-S, Kim G-H. Volatile flavor composition of gamguk (Chrysanthemum indicum) flower essential oils. Food Sci. Biotechnol. 20: 319–325 (2011)

    Article  CAS  Google Scholar 

  20. Cheng W, Li J, You T, Hu C. Anti-inflammatory and immunomodulatory activities of the extracts from the inflorescence of Chrysanthemum indicum Linné. J. Ethnopharmacol. 101: 334–337 (2005)

    Article  Google Scholar 

  21. Chun HS, Kim J-M, Choi EH, Chang N. Neuroprotective effects of several Korean medicinal plants traditionally used for stroke remedy. J. Med. Food 11: 246–251 (2008)

    Article  CAS  Google Scholar 

  22. Kim D-O, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. J. Agr. Food Chem. 50: 3713–3717 (2002)

    Article  CAS  Google Scholar 

  23. Ellman GL, Courtney KD, Andres V Jr., Featherstone RM. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 7: 88–95 (1961)

    Article  CAS  Google Scholar 

  24. Jung E-K. Chemical composition and antimicrobial activity of the essential oil of Chrysanthemum indicum against oral bacteria. J. Bacteriol. Virol. 39: 61–69 (2009)

    Article  CAS  Google Scholar 

  25. Aazza S, Lyoussi B, Miguel MG. Antioxidant and antiacetylcholinesterase activities of some commercial essential oils and their major compounds. Molecules 16: 7672–7690 (2011)

    Article  CAS  Google Scholar 

  26. Kim D-O, Lee CY. Comprehensive study on vitamin C equivalent antioxidant capacity (VCEAC) of various polyphenolics in scavenging a free radical and its structural relationship. Crit. Rev. Food Sci. 44: 253–273 (2004)

    Article  CAS  Google Scholar 

  27. LeBel CP, Ischiropoulos H, Bondy SC. Evaluation of the probe 2′,7′-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem. Res. Toxicol. 5: 227–231 (1992)

    Article  CAS  Google Scholar 

  28. Girard-Lalancette K, Pichette A, Legault J. Sensitive cell-based assay using DCFH oxidation for the determination of pro- and antioxidant properties of compounds and mixtures: Analysis of fruit and vegetable juices. Food Chem. 115: 720–726 (2009)

    Article  CAS  Google Scholar 

  29. Cai L, Wang H, Li Q, Qian Y, Yao W. Salidroside inhibits H2O2-induced apoptosis in PC 12 cells by preventing cytochrome C release and inactivating of caspase cascade. Acta Bioch. Bioph. Sin. 40: 796–802 (2008)

    Article  CAS  Google Scholar 

  30. Özkan A, Erodgan A. A comparative evaluation of antioxidant and anticancer activity of essential oil from Origanum onites (Lamiaceae) and its two major phenolic components. Turk. J. Biol. 35: 735–742 (2011)

    Google Scholar 

  31. Chen X, Fang L, Liu J, Zhan C-G. Reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of acetylcholine. J. Phys. Chem. B 115: 1315–1322 (2011)

    Article  CAS  Google Scholar 

  32. Jukic M, Politeo O, Maksimovic M, Milos M, Milos M. In vitro acetylcholinesterase inhibitory properties of thymol, carvacrol, and their derivatives thymoquinone and thymohydroquinone. Phytother. Res. 21: 259–261 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Ok Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B.H., Nam, T.G., Park, W.J. et al. Antioxidative and neuroprotective effects of volatile components in essential oils from Chrysanthemum indicum Linné flowers. Food Sci Biotechnol 24, 717–723 (2015). https://doi.org/10.1007/s10068-015-0093-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0093-0

Keywords

Navigation