Skip to main content
Log in

Production of the isoflavone aglycone and antioxidant activities in black soymilk using fermentation with Streptococcus thermophilus S10

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The best starter culture for fermented black soymilk was determined. Black soymilk was fermented using Lactobacillus acidophilus ATCC 4356 (LA), Lactobacillus plantarum P8 (LP), and Streptococcus thermophilus S10 (ST). An ST single culture exhibited higher β-glucosidase activities than LAST (LA:ST=1:1, v/v), LPST (LP:ST=1:1, v/v), and LALPST (LA:LP:ST=1:1:1, v/v) mixed cultures. The pH of fermented black soymilk was significantly (p<0.05) decreased during fermentation due to an increase in lactic acid formed by lactic acid bacteria. The β-glucosidase activity of the ST single culture was significantly (p<0.05) higher than for mixed cultures. Black soymilk fermented with ST alone showed significantly (p<0.05) more bioconversion of the isoflavone glycoside to aglycone, compared with controls. Black soymilk fermented with ST resulted in the best antioxidant effect. The ST single culture was best for production of health functional fermented black soymilk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cederroth CR, Zimmermann C, Nef S. Soy, phytoestrogen, and their impact on reproductive health. Mol. Cell. Endocrinol. 355: 192–200 (2012)

    Article  CAS  Google Scholar 

  2. Takahashi R, Ohmori R, Kiyose C, Momitama Y, Ohsuzu F, Kondo K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agr. Food Chem. 53: 4578–4582 (2005)

    Article  CAS  Google Scholar 

  3. Brouns F. Soya isoflavones: A new and promising ingredient for the health foods sector. Food Res. Int. 35: 187–193 (2002)

    Article  CAS  Google Scholar 

  4. Cassidy A. Physiological effects of phyto-estrogens in relation to cancer and other human health risks. P. Nutr. Soc. 55: 399–417 (1996)

    Article  CAS  Google Scholar 

  5. Adlercreutz H. Phyto-oestrogens and cancer. Lancet Oncol. 3: 364–373 (2002)

    Article  Google Scholar 

  6. Messina M. Soyfoods and soybean phyto-oestrogens (isoflavones) as possible alternatives to hormone replacement therapy (HRT). Eur. J. Cancer 36: S71–S72 (2000)

    Article  CAS  Google Scholar 

  7. Potter SM, Baum JA, Teng H, Stillman RJ, Shay NF. Erdman JW Jr.. Soy protein and isoflavones: Their effects on blood lipids and bone density in postmenopausal women. Am. J. Clin. Nutr. 68: 1375S–1379S (1998)

    CAS  Google Scholar 

  8. Scalabrini P, Rossi M, Spettoli P, Matteuzzi D. Characterization of Bifidobacterium strains for use in soymilk fermentation. Int. J. Food Microbiol. 39: 213–219 (1998)

    Article  CAS  Google Scholar 

  9. Wang H, Murpy PA. Isoflavone content in commercial soybean foods. J. Agr. Food Chem. 42: 1666–1673 (1994)

    Article  CAS  Google Scholar 

  10. Toda T, Sakamoto A, Takayanagi T, Yokotsuka K. Changes in isoflavone compositions of soybean Food during the cooking process. Food Sci. Technol. Res. 6: 314–319 (2000)

    Article  CAS  Google Scholar 

  11. Izumi T, Piskula MK, Osawa S, Obata A, Tobe K, Saito M, Kataoka S, Kubota Y, Kikuchi M. Soy isoflavone aglycones are absorbed faster and in higher amounts than their glucosides in humans. J. Nutr. 130: 1695–1699 (2000)

    CAS  Google Scholar 

  12. Lee BH, Lo YH, Pan TM. Anti-obesity activity of Lactobacillus fermented soymilk products. J. Funct. Foods 5: 905–913 (2013)

    Article  CAS  Google Scholar 

  13. Marazza JA, LeBlanc JG, de Giori GS, Garro MS. Soymilk fermented with Lactobacillus rhamnosus CRL981 ameliorates hyperglycemia, lipid profiles and increases antioxidant enzyme activities in diabetic mice. J. Funct. Foods 5: 1848–1853 (2013)

    Article  CAS  Google Scholar 

  14. Shon MY, Seo KI, Lee SW, Choi SH, Sung NJ. Biological activities of chungkugjang prepared with black bean and changes in phytoestrogen content during fermentation. Korean J. Food Sci. Technol. 32: 936–941 (2000)

    Google Scholar 

  15. Hwang JS, Kim JY, Sung DI, Yi YS, Kim HB. Fermentation of black-soybean Chungkookjang using Bacillus licheniformis B1. Korean J. Microbiol. 48: 216–219 (2012)

    Article  Google Scholar 

  16. Mital BK, Steinkraus KH, Naylor HB. Growth of lactic acid bacteria in soy milks. J. Food Sci. 39: 1018–1022 (1974)

    Article  CAS  Google Scholar 

  17. Wang Z, Bao Y, Zhang Y, Zhang J, Yao G, Wang S, Zhang H. Effect of soymilk fermented with Lactobacillus plantarum P-8 on lipid metabolism and fecal microbiota in experimental hyperlipidemic rats. Food Biophys. 8: 43–49 (2013)

    Article  Google Scholar 

  18. Hong GE, Mandal PK, Lim KW, Lee CH. Fermentation increased isoflavone aglycone contents in black soybean pulp. Asian J. Anim. Vet. Adv. 7: 502–511 (2012)

    Article  CAS  Google Scholar 

  19. AOAC. Official method of analysis AOAC Intl. 17th ed. Method 947.05. Association of Official Analytical Communities, Arlington, VA, USA (2000)

    Google Scholar 

  20. AOAC. Official method of analysis AOAC Intl. 17th ed. Method 942.05 Association of Official Analytical Communities, Arlington, VA, USA (2000)

    Google Scholar 

  21. AOAC. Official method of analysis AOAC Intl. 17th ed. Method 920.39. Association of Official Analytical Communities, Arlington, VA, USA (2000)

    Google Scholar 

  22. AOAC. Official method of analysis AOAC Intl. 17th ed. Method 984.13. Association of Official Analytical Communities, Arlington, VA, USA (2000)

    Google Scholar 

  23. Matsuura M, Sasaki J, Murao S. Studies on β-glucosidase from soybeans that hydrolyze daidzin and genistin: Isolation and characterization of an isozyme. Biosci. Biotech. Bioch. 59: 1623–1627 (1995)

    Article  CAS  Google Scholar 

  24. Chung WY, Kim SK, Son JY. Isoflavone contents and physiological activities of soybeans fermented with Aspergillus oryzae or Bacillus natto. J. Korean Soc. Food Sci. Nutr. 37: 141–147 (2008)

    Article  CAS  Google Scholar 

  25. Singleton VL, Rossi Jr. JA. Colorimetry of total phenolics with phosphomolybic-phosphotungstic acid reagents. Am. J. Enol. Viticult. 16: 144–158 (1965)

    CAS  Google Scholar 

  26. Blois MS. Antioxidant determinations by the use of a stable free radical. Nature 181: 1198–1200 (1958)

    Article  Google Scholar 

  27. Oyaizu M. Studies on products of browning reactions: Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 44: 307–315 (1986)

    Article  CAS  Google Scholar 

  28. Angeles AG, Marth EH. Growth and activity of lactic acid bacteria in soymilk. 1. Growth and acid production. J. Milk Food Technol. 34: 30–36 (1971)

    CAS  Google Scholar 

  29. Pinthong R, Macrae R, Dick J. The development of a soya-based yogurt. J. Food Technol. 15: 647–667 (1980)

    Article  CAS  Google Scholar 

  30. Chien HL, Huang HY, Chou CC. Transformation of isoflavone phytoestrogens during the fermentation of soymilk with lactic acid bacteria and bifidobacteria. Food Microbiol. 23: 772–778 (2006)

    Article  CAS  Google Scholar 

  31. Matsuura M, Obata A. β-Glucosidase from soybeans hydrolyze daidzin and genistin. J. Food Sci. 58: 144–147 (1993)

    Article  CAS  Google Scholar 

  32. Tsangalis D, Ashton JF, Mcgill AEJ, Shah NP. Biotransformation of isoflavone by bifidobacteria in fermented soymilk supplemented with d-glucose and l-cystein. J. Food Sci. 68: 623–631 (2003)

    Article  CAS  Google Scholar 

  33. Onozawa M, Fukuda K, Ohtani M, Akaza H, Sugimura T, Wakabayashi K. Effects of soybean isoflavones on cell growth and apoptosis of the human prostate cancer cell line LNCaP. Jpn. J. Clin. Oncol. 28: 360–363 (1998)

    Article  CAS  Google Scholar 

  34. Xu X, Wang HJ, Murphy PA, Cook L, Hendrich S. Daidzein is a more bioavailable soymilk isoflavone than is genistein in adult woman. J. Nutr. 124: 825–832 (1994)

    CAS  Google Scholar 

  35. Park JW, Lee YJ, Yoon S. Total flavonoids and phenolics in fermented soy products and their effects on antioxidant activities determined by different assays. Korean J. Food Culture 22: 353–358 (2007)

    Google Scholar 

  36. Pratt DE, Birac PM. Source of antioxidant activity of soybeans and products. J. Food Sci. 44: 1720–1722 (1979)

    Article  CAS  Google Scholar 

  37. Meir S, Kanner J, Akiri B, Hadas SP. Determination and involvement of aqueous reducing compounds in oxidative defense system of various senescing leaves. J. Agr. Food Chem. 43: 1813–1819 (1995)

    Article  CAS  Google Scholar 

  38. Pyo YH, Lee TC, Lee YC. Effect of lactic acid fermentation on enrichment of antioxidant properties and bioactive isoflavones in soybean. J. Food Sci. 70: S215–S220 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Ho Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, M., Hong, GE., Zhang, H. et al. Production of the isoflavone aglycone and antioxidant activities in black soymilk using fermentation with Streptococcus thermophilus S10. Food Sci Biotechnol 24, 537–544 (2015). https://doi.org/10.1007/s10068-015-0070-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0070-7

Keywords

Navigation